Skip to main content
Log in

Robust Lyapunov–Krasovskii based design for explicit control protocol against heterogeneous delays

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

TCP has been extensively credited for the stability of the Internet. However, as the product of bandwidth and latency increases, TCP becomes inefficient and prone to instability. The explicit control protocol (XCP) is a promising congestion control protocol that outperforms TCP in terms of efficiency, fairness, convergence speed, persistent queue length and packet loss rate. However, XCP is not globally stable in the presence of heterogeneous delays. When the ratio of maximum to average transmission latency is sufficiently large, XCP will become instability. In this paper, according to the robust control theory, with the help of a recently developed Lyapunov–Krasovskii functional, an improved version of XCP, named R-XCP, is proposed to solve the weakness of XCP under heterogeneous delays, which adjusts parameter \(\alpha \) from an initial value of 0.4 to a reasonable value for improving system robustness. And then, the synthesis problem is reduced to a convex optimization scheme expressed in terms of linear matrix inequalities. Extensive simulations have shown that R-XCP significantly decreases the volatilities of the aggregate traffic rate and control time interval, and indeed achieves this stability goal. Compared with previous work, R-XCP has a better balance between robustness and responsiveness, and the computational complexity declines significantly at the same time. Besides, R-XCP makes the system less sensitive to flows, which contribute little traffic but maliciously report their transmission delays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ott, T. J. (2005). Transport protocols in the TCP paradigm and their performance. Telecommunication Systems, 30(4), 351–385.

    Article  Google Scholar 

  2. Qazi, I. A., Znati, T., & Andrew, L. L. H. (2009). Congestion control using efficient explicit feedback. In Proceedings of IEEE INFOCOM.

  3. Rodriguez-Colina, E., Gil-Leyva, D., Marzo, J. L., Vctor, M., & Ramos, R. (2014). A bit error rate analysis for TCP traffic over parallel free space photonics. Telecommunication Systems, 56(4), 455–466.

    Article  Google Scholar 

  4. Katabi, D., Handley, & M., Rohrs, C. (2002). Congestion control for high bandwidth-delay-product networks. In Proceedings of IEEE/ACM SIGCOMM.

  5. Zhang, Y., & Henderson, T. (2005). An implementation and experimental study of the explicit control protocol (XCP). In Proceedings of IEEE INFOCOM.

  6. Lopez Pacheco, D. M., Pham, C., & Lefevre, L. (2006). XCP-i: explicit control protocol for heterogeneous inter-networking of high speed networks. In Proceedings of IEEE GLOBECOM.

  7. Yang, X., Lu, Y., & Zan, L. (2010). Improving XCP to achieve max-min fair bandwidth allocation. Computer Networks, 54(3), 442–461.

    Article  Google Scholar 

  8. Zhou, H., Hu, C., & He, L. (2013). Improving the efficiency and fairness of eXplicit control protocol in multi-bottleneck networks. Computer Communications, 36(10), 1193–1208.

    Article  Google Scholar 

  9. Abrantes, F., & Ricardo, M. (2006). XCP for shared-access multi-rate media. ACM SIGCOMM Computer Communication Review, 36(11), 29–38.

    Google Scholar 

  10. Barreto, L. (2015). XCP-Winf and RCP-Winf: Improving explicit wireless congestion control. Journal of Computer Networks and Communications, 2015, 1–18.

    Article  Google Scholar 

  11. Zhou, K., Yeung, K. L., & Li, V. O. K. (2004). P-XCP: A transport layer protocol for satellite IP networks. In Proceedings of IEEE GLOBECOM.

  12. Sun, Y., Ji, Z., & Wang, H. (2012). A modified variant of explicit control protocol in satellite networks. Journal of Computational Information Systems, 8(10), 4355–4362.

    Google Scholar 

  13. Liu, F., Wang, H. O., & Guan, Z. (2012). Hopf bifurcation control in the XCP for the internet congestion control system. Nonlinear Analysis: Real World Applications, 13(x), 1466–1479.

    Article  Google Scholar 

  14. Cheng, S., Li, J., Zhu, L., & Guo, C. (2010). Time-domain sending rate and response function of eXplicit control protocol. Telecommunication Systems, 45(4), 323–328.

    Article  Google Scholar 

  15. Zhang, Y., & Ahmed, M. (2005). A control theoretic analysis of XCP. In Proceedings of IEEE INFOCOM.

  16. Lu, Z., & Zhang, S. (2009). Stability analysis of XCP congestion control systems. In Proceedings of IEEE WCNC.

  17. Wilson, C., Coakley, C., & Zhao, B. Y. (2007). Fairness attacks in the explicit control protocol. In Proceedings of IEEE IWQoS.

  18. Alparslan, O., Arakawa, S., & Murata, M. (2009). XCP-based transmission control mechanism for optical packet switched networks with very small optical RAM. Photonic Network Communications, 18(2), 237–243.

    Article  Google Scholar 

  19. Alparslan, O., Arakawa, S., & Murata, M. (2011). Buffer scaling for optical packet switching networks with shared RAM. Optical Switching and Networking, 8(1), 12–22.

    Article  Google Scholar 

  20. Andrew, L. L., Wydrowski, B. P., & Low, S. H. An example of instability in XCP. http://netlab.caltech.edu/maxnet/XCP_instability.

  21. Jiang, H., & Dovrolis, C. (2002). Passive estimation of TCP round trip times. ACM SIGCOMM Computer Communications Review, 32(3), 75–88.

    Article  Google Scholar 

  22. Shakkottai, S., Srikant, R., Brownlee, N., Broido, A., & Claffy, K. (2004). The RTT distribution of TCP flows in the internet and its impact on TCP-based flow control. CAIDA technical report.

  23. Gu, K., Kharitonov, V. L., & Chen, J. (2003). Stability of time-delay systems. Boston: Birkhauser.

    Book  Google Scholar 

  24. Boyd, S., El Ghaoui, L., Feron, E., & Balakrishnan, V. (1997). Linear matrix inequalities in system and control theory. Philadelphia: Society for Industrial Mathematics.

    Google Scholar 

  25. Kelly, F. P., Maulloo, A. K., & Tan, D. K. H. (1998). Rate control in communication networks: Shadow prices, proportional fairness, and stability. Journal of the Operational Research Society, 49(x), 237–252.

    Article  Google Scholar 

  26. Floyd, S. (2003). HighSpeed TCP for large congestion windows. RFC3649.

  27. Kelly, T. (2003). Scalable TCP: Improving performance in high-speed wide area networks. ACM SIGCOMM Computer Communication Review, 33(2), 83–91.

    Article  Google Scholar 

  28. Leith, D., & Shorten, R. (2008). H-TCP: TCP congestion control for high bandwidth-delay product paths. Internet Draft.

  29. Ha, S., Rhee, I., & Xu, L. (2008). CUBIC: A new TCP-friendly high-speed TCP variant. ACM SIGOPS Operating Systems Review, 42(5), 64–74.

    Article  Google Scholar 

  30. Wei, D. X., Jin, C., Low, S. H., & Hegde, S. (2006). FAST TCP: Motivation, architecture, algorithms performance. IEEE/ACM Transactions on Networking, 14(6), 1246–1259.

    Article  Google Scholar 

  31. Bullot, H., Les Cottrell, R., & Hughes-Jones, R. (2003). Evaluation of advanced TCP stacks on fast long-distance production networks. Journal of Grid Computing, 1(4), 345–359.

    Article  Google Scholar 

  32. Ryu, S., Rump, C., & Qiao, C. (2004). Advances in active queue management (AQM) based TCP congestion control. Telecommunication Systems, 25(3), 317–351.

    Article  Google Scholar 

  33. Floyd, S., & Jacobson, V. (1993). Random early detection gateways for congestion avoidance. IEEE/ACM Transactions on Networking, 1(4), 397–413.

    Article  Google Scholar 

  34. Hollot, C. V., Misra, V., Towsley, D., & Gong, W. (2001). On designing improved controllers for AQM routers supporting TCP flows. In Proceedings of IEEE INFOCOM.

  35. Feng, W., Shin, K. G., Kandlur, D. D., & Saha, D. (2002). The BLUE active queue management algorithms. IEEE/ACM Transactions on Networking, 10(4), 513–528.

    Article  Google Scholar 

  36. Pan, R., Prabhakar, B., & Psounis, K. (2000). CHOKe: A sateless AQM scheme for approximating fair bandwidth allocation. In Proceedings of IEEE INFOCOM.

  37. Kunniyur, S., & Srikant, R. (2001). Analysis and design of an adaptive virtual queue (AVQ) algorithm for active queue management. In Proceedings of IEEE/ACM SIGCOMM.

  38. Athuraliya, S., Li, V. H., Low, S. H., & Yin, Q. (2001). REM: Active queue management. IEEE Network, 15(3), 48–53.

    Article  Google Scholar 

  39. Kahe, G., Jahangir, A. H., & Ebrahimi, B. (2014). AQM controller design for TCP networks based on a new control strategy. Telecommunication Systems, 57(4), 295–311.

    Article  Google Scholar 

  40. Chrost, L., & Chydzinski, A. (2016). On the deterministic approach to active queue management. Telecommunication Systems, 63(1), 27–44.

  41. Falk, A., Katabi, D., & Pryadkin, Y. (2007). Specification for the eXplicit control protocol (XCP). draft-falk-xcp-03.txt (work in progress).

  42. Xia, Y., Subramanian, L., Stoica, I., & Kalyanaraman, S. (2005). One more bit is enough. In Proceedings of IEEE/ACM SIGCOMM.

  43. Qzai, I. A., & Znati, T. (2008) On the design of load factor based congestion control protocols for next-generation networks. In Proceedings of IEEE INFOCOM.

  44. Dukkipati, N., Kobayashi, M., Zhang-Shen, R., & McKeown, N. (2005) Processor sharing flows in the internet. In Proceedings of IEEE IWQoS.

  45. Zhang, Y., Leonard, D., & Loguinov, D. (2006). JetMax: Scalable max–min congestion control high-speed heterogeneous networks. In Proceedings of IEEE INFOCOM.

  46. Wydrowski, B. P., Andrew, L. L. H., & Mareels, I. M. Y. (2004). MaxNet: Faster flow control convergence. In Proceedings of IFIP/TC6 Networking.

  47. Tahiliani, R. P., Tahiliani, M. P., & Sekaran, K. C. (2015). TCP congestion control in data center networks. Handbook on data centers. New York: Springer.

    Google Scholar 

  48. Vasudevan, V., Phanishayee, A., Shah, H., Krevat, E., Andersen, David G., Ganger, Gregory R., et al. (2009). Safe and effective fine-grained TCP retransmissions for datacenter communication. ACM SIGCOMM Computer Communication Review, 39(4), 303–314.

    Article  Google Scholar 

  49. Alizadehzy, M., Greenbergy, A., Maltzy, D. A., Padhyey, J., Pately, P., Prabhakarz, B., et al. (2010). Data center TCP (DCTCP). ACM SIGCOMM Computer Communication Review, 40(4), 63–74.

    Article  Google Scholar 

  50. Haitao, W., Feng, Z., Guo, C., & Zhang, Y. (2013). ICTCP: Incast congestion control for TCP in data-center networks. IEEE/ACM Transations on Networking, 21(2), 345–358.

    Article  Google Scholar 

  51. Vamanan, B., Hasan, J., & Vijaykumar, T. N. (2012). Deadline-aware datacenter TCP (D2TCP). ACM SIGCOMM Computer Communication Review, 42(4), 115–126.

    Article  Google Scholar 

  52. Zhang, J., Ren, F., Tang, L., & Lin, C. (2013). Taming TCP incast throughput collapse in data center networks. In Proceedings of 21st IEEE international conference on network protocols (ICNP).

  53. Cheng, L., Wang, C. L., & Lau, F. C. M. (2013). PVTCP: Towards practical and effective congestion control in virtualized datacenters. In Proceedings of 21st IEEE international conference on network protocols (ICNP).

  54. Alizadeh, M., Edsall, T., Dharmapurikar, S., Vaidyanathan, R., Chu, Kevin, Fingerhut, A., et al. (2014). CONGA: Distributed congestion-aware load balancing for datacenters. ACM SIGCOMM Computer Communication Review, 44(4), 503–514.

    Article  Google Scholar 

  55. Chen, W., Ren, F., Xie, J., Lin, C., Yiny, K., & Baker, F. (2015). Comprehensive understanding of TCP incast problem. In Proceedings of IEEE conference on computer communications (INFOCOM).

  56. Hollot, C. V., Liu, Y., Misra, V., & Towsley, D. (2003). Unresponsive flows and AQM performance. In Proceedings of IEEE INFOCOM.

  57. Paxson, V. (1997). End-to-end internet packet dynamics. In Proceedings of IEEE/ACM SIGCOMM.

  58. Balakrishnan, H., Dukkipati, N., McKeown, N., & Tomlin, C. J. (2007). Stability analysis of explicit congestion control protocols. IEEE communications magazine.

  59. Robust control toolbox. http://www.mathworks.com/products/robust/.

  60. Traffic analysis research. http://www.caida.org/research/traffic-analysis/.

  61. Crovella, M. E., & Bestavros, A. (1997). Self-similarity in world wide web traffic: Evidence and possible causes. IEEE/ACM Transactions on Networking, 5(6), 835–846.

    Article  Google Scholar 

  62. Issariyakul, T., & Hossain, E. (2011). Introduction to network simulator NS2. Berlin: Springer.

    Google Scholar 

  63. Floyd, S., Handley, M., Padhye, J., & Widmer, J. (2000). Equation-based congestion control for unicast applications. In Proceedings of IEEE/ACM SIGCOMM.

  64. Wei, D. X., Cao, P., & Low, S. H. (2005). Time for a TCP benchmark suite? Technical report, Caltech CS, Stanford EAS, Caltech.

  65. Ha, S., Kim, Y., Le, L., Rhee, I., & Xu, L. (2006). A step toward realistic evaluation of high-speed TCP protocols. Technical report, North Carolina State University.

Download references

Acknowledgements

This work is partially supported by the Program of National Natural Science Foundation of China (No. 41404025), and State Key Laboratory of Geo-Information Engineering (No. SKLGIE2014-M-2-2). It is also funded by the Fundamental Research Funds for the Central Universities (No. 2014B03314).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lina He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, L., Zhou, H. Robust Lyapunov–Krasovskii based design for explicit control protocol against heterogeneous delays. Telecommun Syst 66, 377–392 (2017). https://doi.org/10.1007/s11235-017-0290-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-017-0290-7

Keywords

Navigation