Skip to main content
Log in

Bandwidth-variable optical transport network with adjustable time-modulated and inverse-multiplexed wavelength channels

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

This paper presents a bandwidth-variable and optical-groomable (BVOG) transport network architecture based on time-modulated optical cross-connects that enables efficient switching of periodic burst-sequenced traffic in addition to wavelength streaming traffic; with an elastic control plane that shapes each sub-wavelength traffic stream at the network edge into a sequence of periodic bursts, and inverse-multiplexes a supra-wavelength traffic stream into a group of multiple wavelength traffic streams and a potential sub-wavelength traffic stream to match the bandwidth requirement. BVOG network enables variable-time-slotted lightpaths with variable-length time slots to meet the bandwidth requirements of sub-wavelength traffic; and inverse-multiplexed lightpath-group (IM-lightpath-group) with variable group size to meet the bandwidth requirements of supra-wavelength traffic. For the problem of “routing and wavelength and time assignment” (RWTA) for sub-wavelength traffic; this paper presents an optimal integer linear programming (ILP) formulation that maximizes total network throughput, and a heuristic algorithm to minimize the blocking probability of future connection requests. For the problem of “inverse-multiplexed routing and wavelength assignment” (IMRWA) for supra-wavelength traffic; this paper presents an optimal ILP formulation that minimizes the total number of hops and the total per-hop propagation delays of the IM-lightpath-group, and a heuristic algorithm that minimizes the total number of wavelength channels of the IM-lightpath-group. The RWTA ILP is solved by the ILOG CPLEX optimization tool, and it is used to check the optimality of the RWTA heuristic. Performance tuning of the IMRWA heuristic is investigated to balance the tradeoff between performance and computation complexity. Performance tuning of the BVOG network with the RWTA and IMRWA heuristic is examined through simulation experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cao, X., Anand, V., Xiong, Y., & Qiao, C. (2003). A study of waveband switching with multilayer multigranular optical cross-connects. IEEE Journal on Selected Areas in Communications, 21(7), 1081–1095.

    Article  Google Scholar 

  2. Izmailov, R., Ganguly, S., Wang, T., Suemura, Y., Maeno, Y., & Araki, S. (2002). Hybrid hierarchical optical. Networks. IEEE Communication Magazine, 40(11), 88–94.

    Article  Google Scholar 

  3. de Miguel, González, J. C., Koonen, T., Durán, R., Fernández, P., & Monroy, I. T. (2004). Polymorphic architectures for optical networks and their seamless evolution towards next generation networks. Photonic Network Communications, 8(2), 177–189.

    Article  Google Scholar 

  4. Van Breusegem, E., Cheyns, J., De Winter, D., Colle, D., Pickavet, M., Demeester, P., et al. (2005). A broad view on overspill routing in optical networks: A real synthesis of packet and circuit switching. Optical Switching and Networking, 1(1), 51–64.

    Article  Google Scholar 

  5. Perez, J. F., & Van Houdt, Benny. (2009). Wavelength allocation in an optical switch with a fiber delay line buffer and limited-range wavelength conversion. Telecommunication Systems, 41, 37–49.

    Article  Google Scholar 

  6. Jinno, M., Ohara, T., Sone, Y., Hirano, A., Ishida, O., & Tomizawa, M. (2011). Elastic and adaptive optical networks: Possible adoption scenarios and future standardization aspects. IEEE Communication Magazine, 49, 164–172.

    Article  Google Scholar 

  7. Kozicki, B., Takara, H., Tsukishima, Y., Yoshimatsu, T., Yonenaga, K., & Jinno, M. (2010). Experimental demonstration of spectrum-sliced elastic optical path nework (SLICE). Optics Express, 18(21), 22105–22118.

    Article  Google Scholar 

  8. Zahilah, R., Ogino, Y., Nishiuma, S., Nooruzzaman, M., Thuy, N. T. H., Koyama, O., et al. (2011). Lightpath design & management system for IP-over-CWDM networks with ROADMs, employing parallel processing. Telecommunication Systems, 52, 1033–1042. doi:10.1007/s11235-011-9610-5.

    Google Scholar 

  9. Christodoulopoulos, K., Tomkos, I., & Varvarigos, E. A. (2011). Elastic bandwidth allocation in flexible OFDM-based optical networks. Journal of Lightwave Technology, 29(9), 1354–1366.

    Article  Google Scholar 

  10. Zhu, H., Zang, H., Zhu, K., & Mukherjee, B. (2003). A novel generic graph model for traffic grooming in heterogeneous WDM mesh networks. IEEE/ACM Transactions on Networking, 11(2), 285–299.

    Article  Google Scholar 

  11. Prathombutr, P., Stach, J., & Park, E. K. (2005). An algorithm for traffic grooming in WDM optical mesh networks with multiple objectives. Telecommunication Systems, 28, 369–386.

    Article  Google Scholar 

  12. Nag, A., Tornatore, M., & Mukherjee, B. (2010). Optical network design with mixed line rates and multiple modulation formats. IEEE Journal of Lightwave Technology, 28(4), 466–475.

    Article  Google Scholar 

  13. Yates, J., Lacey, J., & Everitt, D. (1999). Blocking in multiwavelength TDM networks. Telecommunication Systems, 12, 1–19.

    Article  Google Scholar 

  14. Huang, N. F., Liaw, G. H., & Wang, C. P. (2000). A novel all-optical transport network with time-shared wavelength channels. IEEE Journal on Selected Areas in Communications, 18(10), 1863–1875.

    Article  Google Scholar 

  15. Wen, B., & Sivalingam, K. M. (2005). Routing, wavelength and time-slot-assignment algorithms for wavelength-routed optical WDM/TDM networks. IEEE Journal of Lightwave Technology, 23(9), 2598–2609.

    Article  Google Scholar 

  16. Chen, A., Wong, A. K. S., & Lea, C. T. (2004). Routing and time-slot assignment in optical TDM networks. IEEE Journal on Selected Areas in Communications, 22(9), 1648.

    Article  Google Scholar 

  17. Rodelgo-Lacruz, M., López-Bravo, C., González-Castaño, F. J., Gil-Castiñeira, F., & Jonathan Chao, H. (2009). Non-aligned optical cell switching paradigm. Journal of Optical Communications and Networking, 1(3), 70–80.

    Article  Google Scholar 

  18. Santos, J., Pedro, J., Moneiro, P., & Pires, J. (2011). Optimized routing and buffer design for optical transport networks based on virtual concatenation. Journal of Optical Communications and Networking, 3(9), 725–737.

    Article  Google Scholar 

  19. Ramachandran, M., Usha Rani, N., & Gonsalves, T. A. (2010). Path computation algorithms for dynamic service provisioning with protection and inverse multiplexing in SDH/SONET networks. IEEE/ACM Transactions on Networking, 18(5), 1492–1504.

    Article  Google Scholar 

  20. Yu, O., Li, A., Cao, Y., Xu, H., Liao, M., & Yin, L. (2006). Multi-domain lambda grid data portal for collaborative grid applications. Future Generation Computer Systems, 22(8), 993–1003.

    Article  Google Scholar 

  21. Lu, W., & Zhu, Z. (2013). Dynamic service provisioning of advance reservation requests in elastic optical networks. IEEE Journal of Lightwave Technology, 31(10), 1621–1627.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, O., Xu, H. & Liao, M. Bandwidth-variable optical transport network with adjustable time-modulated and inverse-multiplexed wavelength channels. Telecommun Syst 60, 381–391 (2015). https://doi.org/10.1007/s11235-015-0052-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-015-0052-3

Keywords

Navigation