Skip to main content
Log in

WCDMA downlink capacity of cigar-shaped microcells for long tunnels

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

In this paper, the Wideband Code Division Multiple Access (WCDMA) downlink capacity and the interference statistics of long tunnel cigar-shaped microcells are analyzed. The hybrid model of propagation is used in the analysis where a model of 10 cigar-shaped microcells is used. The downlink capacity is given for different sector radio R, break point distance R b and propagation parameters (s and γ). It is found that the effect of changing the value of the propagation parameter s is very small. Also, it is noticed that, increasing the propagation parameter γ will increase the sector downlink. It is found that, the effect of changing the break point distance R b is quasi null. Finally it is noticed that the imperfect power control reduces the downlink capacity by 4 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ahmed, B. T. (2009). WCDMA downlink capacity of cigar-shaped microcells for underground metro service. European Transactions on Telecommunications, 20, 447–455.

    Article  Google Scholar 

  2. Ahmed, B. T., & Ramon, M. C. (2007). WCDMA downlink capacity of cigar-shaped microcells using soft hand-over with SIR-based power control for over-ground train service. Computer Communications, 31(1), 88–94.

    Article  Google Scholar 

  3. Ahmed, B. T., Ramon, M. C., & Ariet, L. H. (2002). Capacity and interference statistics of highways W-CDMA cigar-shaped microcells (uplink analysis). IEEE Communications Letters, 6(5), 172–174.

    Article  Google Scholar 

  4. Ahmed, B. T., Ramon, M. C., & Ariet, L. H. (2004). W-CDMA uplink capacity and interference statistics of a long tunnel cigar-shaped microcells using the hybrid model of propagation with imperfect power control. Wireless Personal Communications, 31, 19–31.

    Article  Google Scholar 

  5. Assaad, M., Jouaber, B., & Zeghlache, D. (2004). TCP performance over UMTS-HSDPA system. Telecommunication Systems, 27(2–4), 371–391.

    Article  Google Scholar 

  6. Briso-Rodríguez, C., Cruz, J. M., & Alonso, J. I. (2007). Measurements and modeling of distributed antenna systems in railway tunnels. IEEE Vehicular Technology, 56(5), 2870–2879.

    Article  Google Scholar 

  7. Chen, L., & Yuan, D. (2011). Coverage planning for optimizing HSDPA performance and controlling R99 soft handover. Telecommunication Systems, published on line.

  8. Chen, Y., & Cuthbert, L. (2002). Optimum size of soft handover zone in power controlled UMTS downlink systems. Electronics Letters, 38(2), 89–90.

    Article  Google Scholar 

  9. Holma, H., & Toskala, A. (2002). WCDMA for UMTS. New York: Wiley.

    Book  Google Scholar 

  10. Lee, C. C., & Steele, R. (1993). CDMA for city street microcells. In IEE colloquium on spread spectrum techniques for radio communication systems (pp. 3/1–3/10).

    Google Scholar 

  11. Mehailescu, C., Lagrange, X., & Godlewski, P. (1999). Soft handover analysis in downlink UMTS WCDMA system. In IEEE MoMuC, San Diego, CA (pp. 279–285).

    Google Scholar 

  12. Parniewicz, D., Stasiak, M., & Zwierzykowski, P. (2011). Analytical model of the multi-service cellular network servicing multicast connections. Telecommunication Systems, published on line.

  13. Van Cauwenberge, S. N. P. (2003). Study of soft handover in UMTS. Master Thesis, Technical University of Denmark.

  14. Viterbi, A. J., Viterbi, A. M., Gilhousen, K. S., & Zehavi, E. (1994). Soft handoff extends CDMA cell coverage and increases reverse link capacity. IEEE Journal on Selected Areas in Communications, 12(8), 1281–1288.

    Article  Google Scholar 

  15. Wong, D., & Lim, T. J. (1997). Soft handoffs in CDMA mobile systems. IEEE Personal Communications, 4(6), 6–17.

    Article  Google Scholar 

  16. Yang, X., Ghaheri-Niri, S., & Tafazolli, R. G. (2001). Downlink soft handover gain in CDMA cellular network with cross-correlated shadowing. In IEEE veh. technology conf. VTC (Vol. 1, pp. 276–280).

    Google Scholar 

  17. Zhang, D., Wei, G., & Zhu, J. (2002). Performance of hard and soft handover for CDMA system. In IEEE veh. technology conf. VTC (Vol. 2, pp. 1143–1147).

    Google Scholar 

  18. Zhang, Y. P. (2000). A hybrid model for propagation loss prediction in tunnels. In Millennium conference on antennas & propagation, Davos, Switzerland.

    Google Scholar 

  19. 3GPP TSG RAN 25.331 V.5.2.0 (2002). Radio resource control (RRC), protocol specification.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bazil Taha Ahmed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmed, B.T. WCDMA downlink capacity of cigar-shaped microcells for long tunnels. Telecommun Syst 57, 229–237 (2014). https://doi.org/10.1007/s11235-013-9842-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-013-9842-7

Keywords

Navigation