Skip to main content
Log in

Tunnel splitting of the spectrum and bilocalization of eigenfunctions in an asymmetric double well

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the one-dimensional stationary Schrödinger equation with a smooth double-well potential. We obtain a criterion for the double localization of wave functions, exponential splitting of energy levels, and the tunneling transport of a particle in an asymmetric potential and also obtain asymptotic formulas for the energy splitting that generalize the formulas known in the case of a mirror-symmetric potential. We consider the case of higher energy levels and the case of energies close to the potential minimums. We present an example of tunneling transport in an asymmetric double well and also consider the problem of tunnel perturbation of the discrete spectrum of the Schrödinger operator with a single-well potential. Exponentially small perturbations of the energies occur in the case of local potential deformations concentrated only in the classically forbidden region. We also calculate the leading term of the asymptotic expansion of the tunnel perturbation of the spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Razavy, Quantum Theory of Tunneling, World Scientific, Singapore (2003).

    Book  MATH  Google Scholar 

  2. J. Ankerhold, Quantum Tunneling in Complex Systems: The Semiclassical Approach (Springer Tracts Mod. Phys., Vol. 224), Springer, Berlin (2007).

    Google Scholar 

  3. F. Hund, Z. Phys., 40, 742–764 (1927).

    Article  ADS  MathSciNet  Google Scholar 

  4. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics [in Russian], Vol. 3, Quantum Mechanics: Non-Relativistic Theory, Nauka, Moscow (1974); English transl., Pergamon, Oxford (1977).

    Google Scholar 

  5. S. Yu. Dobrokhotov, V. N. Kolokoltsov, and V. P. Maslov, Theor. Math. Phys., 87, 561–599 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  6. A. Gangopadhyay, M. Dzero, and V. Galitski, Phys. Rev. B, 82, 024303 (2010); arXiv:1005.0652v1 [cond-mat.mtrl-sci] (2010).

    Article  ADS  Google Scholar 

  7. S. Yu. Slavyanov and W. Lay, Special Functions: A Unified Theory Based on Singularities, Oxford Univ. Press, New York (2000).

    Google Scholar 

  8. M. M. Nieto, V. P. Gutschick, C. M. Bender, F. Cooper, and D. Strottman, Phys. Lett. B, 163, 336–342 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  9. T. F. Pankratova, “Quasimodes and exponential splitting of eigenvalues,” in: Problems of Mathematical Physics [in Russian], Vol. 11, Differential Equations and Scattering Theory, Izdat. Leningrad Univ., Leningrad (1986), pp. 167–177.

    Google Scholar 

  10. B. Helffer and J. Sjóstrand, Commun. Partial Differential Equations, 9, 337–408 (1984).

    Article  MATH  Google Scholar 

  11. B. Helffer and J. Sjóstrand, Ann. Inst. H. Poincaré, 42, 127–212 (1985).

    MATH  Google Scholar 

  12. T. F. Pancratova, J. Soviet Math., 62, 3117–3122 (1992).

    Article  MathSciNet  Google Scholar 

  13. D.-Y. Song, Ann. Phys., 323, 2991–2999 (2008); arXiv:0803.3113v1 [quant-ph] (2008).

    Article  ADS  MATH  Google Scholar 

  14. S. Agmon, Lectures on Exponential Decay of Solutions of Second-Order Elliptic Equations: Bounds on Eigenfunctions of N-Body Schrödinger Operators (Mathematical Notes, Vol. 29), Vol. 29, Princeton Univ. Press, Princeton, N. J. (1982).

  15. B. Simon, J. Funct. Anal., 63, 123–136 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  16. B. Simon, Bull. Amer. Math. Soc., 8, 323–326 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  17. S. Yu. Dobrokhotov and V. N. Kolokoltsov, Theor. Math. Phys., 94, 300–305 (1993).

    Article  MathSciNet  Google Scholar 

  18. G. Jona-Lasinio, F. Martinelli, and E. Scoppola, Commun. Math. Phys., 80, 223–254 (1981).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. M. V. Fedoryuk, Asymptotic Methods for Linear Ordinary Differential Equations [in Russian], Nauka, Moscow (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Vybornyi.

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 178, No. 1, pp. 107–130, January, 2014.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vybornyi, E.V. Tunnel splitting of the spectrum and bilocalization of eigenfunctions in an asymmetric double well. Theor Math Phys 178, 93–114 (2014). https://doi.org/10.1007/s11232-014-0132-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-014-0132-7

Keywords

Navigation