Skip to main content
Log in

M-theory of matrix models

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

Small M-theories incorporate various models representing a unified family in the same way that the M-theory incorporates a variety of superstring models. We consider this idea applied to the family of eigenvalue matrix models: their M-theory unifies various branches of the Hermitian matrix model (including the Dijkgraaf-Vafa partition functions) with the Kontsevich τ-function. Moreover, the corresponding duality relations are reminiscent of instanton and meron decompositions, familiar from the Yang-Mills theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Yu. Morozov, Sov. Phys. Usp., 35, 671 (1992).

    Article  Google Scholar 

  2. J. Bohácik and P. Presnajder, “Nonperturbative approach to (Wiener) functional integral with φ 4 interaction,” hep-th/0507129 (2005); “Functional integral with φ 4 term in the action beyond standard perturbative methods,” hep-th/0503235 (2005); V. Dolotin and A. Morozov, “Introduction to non-linear algebra,” hep-th/0609022 (2006); “Algebraic geometry of discrete dynamics: The case of one variable,” hep-th/0501235 (2005).

  3. S. Coleman, “The use of instantons,” in: The Whys of Subnuclear Physics (Proc. Intl. School Subnuclear Physics, Erice, Sicily, 1977, A. Zichichi, ed.), Plenum, New York (1977), p. 805; A. I. Vainshtein, V. I. Zakharov, V. A. Novikov, and M. A. Shifman, Sov. Phys. Usp., 25, 195 (1982); P. Putrov, “Path integral in energy representation in quantum mechanics,” hep-th/0605169 (2006).

    Google Scholar 

  4. N. A. Nekrasov, Adv. Theor. Math. Phys., 7, 831 (2004); hep-th/0206161 (2002); R. Flume, R. Poghossian, and H. Storch, Modern Phys. Lett. A, 17, 327 (2002); R. Flume and R. Poghossian, Internat. J. Mod. Phys. A, 18, 2541 (2003).

    MathSciNet  Google Scholar 

  5. C. Callan, R. Dashen, and D. Gross, Phys. Rev. D, 17, 2717 (1978).

    Article  ADS  Google Scholar 

  6. A. Mironov, A. Morozov, and T. Tomaras, JETP, 101, 331 (2005).

    Article  Google Scholar 

  7. M. Atiyah, V. Drinfeld, N. Hitchin, and Yu. Manin, Phys. Lett. A, 65, 185 (1978).

    Article  MathSciNet  ADS  Google Scholar 

  8. A. Yu. Morozov, Sov. Phys. Usp., 37, 1 (1994); “Matrix models as integrable systems,” hep-th/9502091 (1995); “Challenges of matrix models,” hep-th/0502010 (2005); A. Mironov, Internat. J. Mod. Phys. A, 9, 4355 (1994); Phys. Part. Nucl., 33, 537 (2002).

    Google Scholar 

  9. A. Gerasimov, S. Khoroshkin, D. Lebedev, A. Mironov, and A. Morozov, Internat. J. Mod. Phys. A, 10, 2589 (1995); A. Mironov, A. Morozov, and L. Vinet, Theor. Math. Phys., 100, 890 (1994); S. Kharchev, A. Mironov, and A. Morozov, Theor. Math. Phys., 104, 866 (1995); A. Mironov, “Quantum deformations of τ-functions, bilinear identities, and representation theory,” hep-th/9409190 (1994); A. D. Mironov, Theor. Math. Phys., 114, 127 (1998).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. A. Morozov, “Identities between quantum field theories in different dimensions,” hep-th/9810031 (1998); K. Saraikin, “Abelian varieties, RCFTs, attractors, and Hitchin functional in two dimensions,” hep-th/0604176 (2006).

  11. A. Alexandrov, A. Mironov, and A. Morozov, “Instantons and merons in matrix models,” hep-th/0608228 (2006).

  12. M. L. Kontsevich, Funct. Anal. Appl., 25, 123 (1991); S. Kharchev, A. Marshakov, A. Mironov, A. Morozov, and A. Zabrodin, Nucl. Phys. B, 380, 181 (1992); Phys. Lett. B, 275, 311 (1992); S. Kharchev, A. Marshakov, A. Mironov, and A. Morozov, Nucl. Phys. B, 397, 339 (1993); Modern Phys. Lett. A, 8, 1047 (1993); Internat. J. Mod. Phys. A, 10, 2015 (1995); P. Di Francesco, C. Itzykson, and J.-B. Zuber, Comm. Math. Phys., 151, 193 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  13. Yu. M. Makeenko, JETP Letters, 52, 259 (1990); J. Ambjørn, J. Jurkiewicz, and Yu. Makeenko, Phys. Lett. B, 251, 517 (1990); T. Morris, Nucl. Phys. B, 356, 703 (1991); A. Anderson, R. C. Meyers, and V. Periwal, Phys. Lett. B, 254, 89 (1991).

    MathSciNet  ADS  Google Scholar 

  14. Yu. Makeenko, A. Marshakov, A. Mironov, and A. Morozov, Nucl. Phys. B, 356, 574 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  15. F. J. Dyson, J. Math. Phys., 3, 140 (1962); M. L. Mehta, Random Matrices, Acad. Press, New York (1991); E. Brézin, C. Itzykson, G. Parisi, and J.-B. Zuber, Comm. Math. Phys., 59, 35 (1978); D. Bessis, Comm. Math. Phys., 69, 147 (1979); D. Bessis, C. Itzykson, and J.-B. Zuber, Adv. Appl. Math., 1, 109 (1980); C. Itzykson and J.-B. Zuber, J. Math. Phys., 21, 411 (1980).

    Article  MathSciNet  Google Scholar 

  16. A. Gerasimov, A. Marshakov, A. Mironov, A. Morozov, and A. Orlov, Nucl. Phys. B, 357, 565 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  17. A. Alexandrov, A. Mironov, and A. Morozov, Internat. J. Mod. Phys. A, 19, 4127 (2004); Fortschr. Phys., 53, 512 (2005); A. S. Aleksandrov, A. D. Mironov, and A. Yu. Morozov, Theor. Math. Phys., 142, 349 (2005).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. R. Dijkgraaf and C. Vafa, Nucl. Phys. B, 644, 3, 21 (2002); hep-th/0208048 (2002); L. Chekhov and A. Mironov, Phys. Lett. B, 552, 293 (2003); H. Itoyama and A. Morozov, Nucl. Phys. B, 657, 53 (2003); Phys. Lett. B, 555, 287 (2003); Progr. Theor. Phys., 109, 433 (2003); Internat. J. Mod. Phys. A, 18, 5889 (2003); L. Chekhov, A. Marshakov, A. Mironov, and D. Vasiliev, Phys. Lett. B, 562, 323 (2003); L. O. Chekhov, A. V. Marshakov, A. D. Mironov, and D. Vasiliev, Proc. Steklov Math. Inst., 251, 254 (2005); hep-th/0506075 (2005).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. A. Alexandrov, A. Mironov, and A. Morozov, Internat. J. Mod. Phys. A, 21, 2481 (2006); hep-th/0412099 (2004).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. L. Chekhov, “Matrix models and geometry of moduli spaces,” hep-th/9509001 (1995).

  21. I. K. Kostov, “Conformal field theory techniques in random matrix models,” hep-th/9907060 (1999).

  22. G. Bonnet, F. David, and B. Eynard, J. Phys. A, 33, 6739 (2000); A. Klemm, M. Mariño, and S. Theisen, JHEP, 0303, 051 (2003); A. Givental, Internat. Math. Res. Notices, 2001, 1265 (2001); math.AG/0008067 (2000).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. S. Kharchev and A. Marshakov, Internat. J. Mod. Phys. A, 10, 1219 (1995); A. Mironov, “On GKM description of multi-criticality in 2d gravity,” Preprint FIAN/TD/16-92, Lebedev Phys. Inst., Russ. Acad. Sci., Moscow (1992).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. V. Periwal and D. Shevitz, Phys. Rev. Lett., 64, 1326 (1990); Nucl. Phys. B, 344, 731 (1990); M. Bowick, A. Morozov, and D. Shewitz, Nucl. Phys. B, 354, 496 (1991); S. Kharchev and A. Mironov, Internat. J. Mod. Phys. A, 7, 4803 (1992); A. Mironov, A. Morozov, and G. Semenoff, Internat. J. Mod. Phys. A, 10, 2015 (1995).

    Article  ADS  Google Scholar 

  25. P. Horava and E. Witten, Nucl. Phys. B, 460, 506 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  26. M. R. Douglas, JHEP, 0305, 046 (2003).

    Article  ADS  Google Scholar 

  27. A. Gerasimov, D. Lebedev, and A. Morozov, Internat. J. Mod. Phys. A, 6, 977 (1991).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. T. Banks, W. Fischler, S. H. Shenker, and L. Susskind, Phys. Rev. D, 55, 5112 (1997).

    Article  MathSciNet  ADS  Google Scholar 

  29. H. Weyl, Z. Phys., 46, 1 (1927); H. Weyl, The Theory of Groups and Quantum Mechanics, Dover, New York (1931); J. E. Moyal, Proc. Cambridge Phil. Soc., 45, 99 (1949).

    Article  Google Scholar 

  30. I. A. Batalin and G. A. Vilkovisky, Phys. Lett. B, 102, 27 (1981); Phys. Rev. D, 28, 2567 (1983); Erratum, 30, 508 (1984); I. A. Batalin and E. S. Fradkin, Phys. Lett. B, 122, 157 (1983); B. L. Voronov and I. V. Tyutin, Theor. Math. Phys., 50, 218 (1982); A. Schwarz, Comm. Math. Phys., 155, 249 (1993); 158, 373 (1993); A. Losev, V. Lysov, and A. Gorodentsev, “On BV and Berkovits theory,” Report at Dombay Seminars on Berkovits Theory, Dombay (2003); D. Krotov, A. Losev, and A. Gorodentsev, “Quantum field theory as effective BV theory from Chern-Simons,” hep-th/0603201 (2006).

    Article  MathSciNet  ADS  Google Scholar 

  31. J. Ambjørn, L. Chekhov, and Yu. Makeenko, Phys. Lett. B, 282, 341 (1992); J. Ambjørn, L. Chekhov, C. F. Kristjansen, and Yu. Makeenko, Nucl. Phys. B, 404, 127 (1993); Erratum, 449, 681 (1995).

    Article  MathSciNet  ADS  Google Scholar 

  32. A. D. Mironov, Theor. Math. Phys., 146, 63 (2006).

    Article  MathSciNet  Google Scholar 

  33. H. Bateman and A. Erdélyi, eds., Higher Transcendental Functions (Based on notes left by H. Bateman), Vol. 2, McGraw-Hill, New York (1953).

    Google Scholar 

  34. I. M. Krichever and S. P. Novikov, Funct. Anal. Appl., 21, 126, 294 (1987); 23, 19 (1989); R. Dick, “Global expansions of holomorphic differentials on punctured Riemann surfaces,” Preprint DESY-89-160, DESY, Hamburg (1989); Lett. Math. Phys., 18, 255 (1989); M. Schlichenmaier, Lett. Math. Phys., 19, 151, 327 (1990); A. Ruffing, T. Deck, and M. Schlichenmaier, Lett. Math. Phys., 26, 23 (1992); hep-th/9207088 (1992); A. Beilinson and V. Schechtman, Comm. Math. Phys., 118, 651 (1988); A. Morozov, Phys. Lett. B, 196, 325 (1987).

    Article  MATH  Google Scholar 

  35. V. G. Knizhnik and A. B. Zamolodchikov, Nucl. Phys. B, 247, 83 (1984).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  36. N. Seiberg and E. Witten, Nucl. Phys. B, 426, 19 (1994); A. Gorsky, I. Krichever, A. Marshakov, A. Mironov, and A. Morozov, Phys. Lett. B, 355, 466 (1995); A. Marshakov, Seiberg-Witten Theory and Integrable Systems, World Scientific, Singapore (1999); Integrability: The Seiberg-Witten and Whitham Equations, Gordon and Breach, Amsterdam (2000); A. Gorsky and A. Mironov, “Integrable many-body systems and gauge theories,” hep-th/0011197 (2000).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  37. E. Witten, Nucl. Phys. B, 268, 253 (1986); B. Zwiebach, Phys. Lett. B, 256, 22 (1991); Modern Phys. Lett. A, 7, 1079 (1992); Ann. Phys., 267, 193 (1998); “Closed string field theory: An introduction,” hep-th/9305026 (1993).

    Article  MathSciNet  ADS  Google Scholar 

  38. E. Witten, Nucl. Phys. B, 276, 291 (1986); “Quantum background independence in string theory,” hep-th/9306122 (1993); A. Sen and B. Zwiebach, Nucl. Phys. B, 414, 649 (1994); 423, 580 (1994); Comm. Math. Phys., 177, 305 (1996); A. Gerasimov and S. Shatashvili, JHEP, 0106, 066 (2001).

    Article  MathSciNet  ADS  Google Scholar 

  39. B. Eynard, JHEP, 0411, 031 (2004); L. Chekhov and B. Eynard, JHEP, 0603, 014 (2006); hep-th/0504116 (2005).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 150, No. 2, pp. 179–192, February, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexandrov, A.S., Mironov, A.D. & Morozov, A.Y. M-theory of matrix models. Theor Math Phys 150, 153–164 (2007). https://doi.org/10.1007/s11232-007-0011-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-007-0011-6

Keywords

Navigation