Skip to main content
Log in

Physico-mathematics and the search for causes in Descartes’ optics—1619–1637

  • Published:
Synthese Aims and scope Submit manuscript

Abstract

One of the chief concerns of the young Descartes was with what he, and others, termed “physico-mathematics”. This signalled a questioning of the Scholastic Aristotelian view of the mixed mathematical sciences as subordinate to natural philosophy, non explanatory, and merely instrumental. Somehow, the mixed mathematical disciplines were now to become intimately related to natural philosophical issues of matter and cause. That is, they were to become more ’physicalised’, more closely intertwined with natural philosophising, regardless of which species of natural philosophy one advocated. A curious, short-lived yet portentous epistemological conceit lay at the core of Descartes’ physico-mathematics—the belief that solid geometrical results in the mixed mathematical sciences literally offered windows into the realm of natural philosophical causation—that in such cases one could literally “see the causes”. Optics took pride of place within Descartes’ physico-mathematics project, because he believed it offered unique possibilities for the successful vision of causes. This paper traces Descartes’ early physico-mathematical program in optics, its origins, pitfalls and its successes, which were crucial in providing Descartes resources for his later work in systematic natural philosophy. It explores how Descartes exploited his discovery of the law of refraction of light—an achievement well within the bounds of traditional mixed mathematical optics—in order to derive—in the manner of physico-mathematics—causal knowledge about light, and indeed insight about the principles of a “dynamics” that would provide the laws of corpuscular motion and tendency to motion in his natural philosophical system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adam, C., & Tannery, P. (Eds.). (1974–1986). Oeuvres de Descartes, (2nd ed. 11 Vols.). Paris: Vrin.

  • Beeckman, I. (1939–1953). In C. de Waard (Ed.), Journal tenu par Isaac Beeckman de 1604 à 1634 (4 Vols.). The Hague: Nijhoff.

  • Bennet J. (1998) Practical geometry and operative knowledge. Configurations 6(2): 195–222

    Article  Google Scholar 

  • Bossha, J. (1908). Annexe note. Archives Neerlandaises des Sciences Exactes et Naturelles, ser 2 t. 13, xii–xiv.

  • Buchdahl G. (1972) Methodological aspects of Kepler’s theory of refraction. Studies in the History and Philosophy of Science 3: 265–298

    Article  Google Scholar 

  • de Waard C. (1935–1936) Le manuscrit perdu de Snellius sur la refraction. Janus 39(40): 51–73

    Google Scholar 

  • Dear P. (1995) Discipline and experience: The mathematical way in the scientific revolution. Chicago University Press, Chicago

    Google Scholar 

  • Gabbey A. (1980) Force and inertia in the seventeenth century: Descartes and Newton. In: Gaukroger S. (eds) Descartes: Philosophy, mathematics and physics. Harvester, Sussex, pp 230–320

    Google Scholar 

  • Gaukroger S. (1995) Descartes: An intellectual biography. Oxford University Press, Oxford

    Google Scholar 

  • Gaukroger S., Schuster J. A. (2002) The hydrostatic paradox and the origins of Cartesian dynamics. Studies in the History and Philosophy of Science 33: 535–572

    Article  Google Scholar 

  • Henry, C., & Tannery, P. (Eds.). (1891–1912). Oeuvres de Fermat. t. II. Paris: Gauthier-Villars.

  • Kepler, J. (1938). In M. Caspar (Ed.), Gesammelte Werke. Munich.

  • Knudsen O., Pedersen K. M. (1968) The link between “determination” and conservation of motion in Descartes’ dynamics. Centaurus 13: 183–186

    Article  Google Scholar 

  • Korteweg D.-J. (1896) Descartes et les manuscrits de Snellius d’après quelques documents nouveau. Révue de Métaphysique et de Morale 4: 489–501

    Google Scholar 

  • Kramer P. (1882) Descartes und das Brechungsgesetz des Lichtes. Abhandlungen zur Geschichte der Mathematischer (Natur) Wissenschaften 4: 235–278

    Google Scholar 

  • Lohne J. (1959) Thomas Harriot (1560–1621). The Tycho Brahe of optics. Centaurus 6: 113–121

    Article  Google Scholar 

  • Lohne J. (1963) Zur Geschichte des Brechungsgesetzes. Sudhoffs Archiv 47: 152–172

    Google Scholar 

  • Mahoney M. (1973) The mathematical career of Pierre de Fermat 1601–1665. Princeton University Press, Princeton

    Google Scholar 

  • McLaughlin P. (2000) Force determination and impact. In: Gaukroger S., Schuster J. A., Sutton J. (eds) Descartes’ natural philosophy. Routledge, London, pp 81–112

    Google Scholar 

  • Mersenne, M. (1932–1988). In C. de Waard, R. Pintard, B. Rochot, & A. Baelieu (Eds.), Correspondence du P. Marin Mersenne (17 Vols.). Paris: Centre National de la Recherche Scientifique.

  • Milhaud, G. (1921). Descartes savant. Paris: Felix Alcan.

  • Mouy, P. (1934). Le développement de la physique Cartésienne. Paris: Vrin.

  • Prendergast T. L. (1975) Motion, action and tendency in Descartes’ physics. Journal of the History of Philosophy 13: 453–462

    Google Scholar 

  • Sabra A. I. (1967) Theories of light from Descartes to Newton. Oldbourne, London

    Google Scholar 

  • Schuster J. A. (1980) Descartes’ mathesis universalis: 1618–1628. In: Gaukroger S. W. (eds) Descartes: Philosophy, mathematics and physics. Harvester, Brighton, pp 41–96

    Google Scholar 

  • Schuster J. A. (1986) Cartesian method as mythic speech: A diachronic and structural analysis. In: Schuster J. A., Yeo R. (eds) The politics and rhetoric of scientific method: Historical studies. Reidel, Dordrecht, pp 33–95

    Google Scholar 

  • Schuster J. A. (1993) Whatever should we do with Cartesian method: Reclaiming Descartes for the history of science. In: Voss S. (eds) Essays on the philosophy and science of René Descartes. Oxford University Press, New York, pp 195–223

    Chapter  Google Scholar 

  • Schuster J. A. (2000) Descartes’ Opticien: The construction of the law of refraction and the manufacture of its physical rationales, 1618–29. In: Gaukroger S., Schuster J. A., Sutton J. (eds) Descartes’ natural philosophy. Routledge, London, pp 258–312

    Google Scholar 

  • Schuster J. A. (2002) L’Aristotelismo e le sue Alternative. In: Garber D. (eds) La Rivoluzione Scientifica. Instituto della Enciclopedia Italiana (in Italian), Rome, pp 337–357

    Google Scholar 

  • Schuster J. A. (2005) Descartes’ vortical celestial mechanics: A gambit in the natural philosophical contest of the early seventeenth century. In: Anstey P., Schuster J. (eds) The science of nature in the seventeenth century: Changing patterns of early modern natural philosophy. Springer, Dordrecht, pp 35–79

    Google Scholar 

  • Shea W. (1991) The magic of motion and numbers: The scientific career of René Descartes. Science History Publications, Canton MA

    Google Scholar 

  • Stevin, S. (1586). De Beghinselen des Waterwichts. In The principal works of Simon Stevin (Vol. 1, pp. 415–417). Leiden.

  • Vollgraff J. A. (1913) Pierre de la Ramée (1515–1572) et Willebrord Snel van Royen (1580–1626). Janus 18: 595–625

    Google Scholar 

  • Vollgraff J. A. (1936) Snellius notes on the reflection and refraction of rays. Osiris 1: 718–725

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Schuster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuster, J.A. Physico-mathematics and the search for causes in Descartes’ optics—1619–1637. Synthese 185, 467–499 (2012). https://doi.org/10.1007/s11229-011-9979-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11229-011-9979-4

Keywords

Navigation