Skip to main content
Log in

Compact deep learned feature-based face recognition for Visual Internet of Things

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

The Visual Internet of Things has received much attention in recent years due to its ability to get the object location via image information of the scene, attach the visual label to the object, and then return information of scene objects to the network. In particular, face recognition is one of the most suitable means to Visual IoT because face feature is inherent label for human being. However, current state-of-the-art face recognition methods based on huge deep neural networks are difficult to apply in the embedded platform for Visual IoT due to the lack of computational resources. To solve this problem, we present compact deep neural network-based face recognition method for Visual Internet of Things. The proposed method has a low model complexity to operate in an embedded environment while using deep neural networks, which is strong against posture and illumination changes. We show competitive accuracy and performance results for the LFW verification benchmark and the collected mobile face recognition dataset. Additionally, we demonstrate that the implementation of the proposed system can be run in real time on the Android-based mobile embedded platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015) TensorFlow: Large-scale machine learning on heterogeneous systems. http://tensorflow.org/

  2. Al-Rfou R, Alain G, Almahairi A, Angermueller C, Bahdanau D, Ballas N, Bastien F, Bayer J, Belikov A, Belopolsky A, Bengio Y, Bergeron A, Bergstra J, Bisson V, Bleecher Snyder J, Bouchard N, Boulanger-Lewandowski N, Bouthillier X, de Brébisson A, Breuleux O, Carrier PL, Cho K, Chorowski J, Christiano P, Cooijmans T, Côté MA, Côté M, Courville A, Dauphin YN, Delalleau O, Demouth J, Desjardins G, Dieleman S, Dinh L, Ducoffe M, Dumoulin V, Ebrahimi Kahou S, Erhan D, Fan Z, Firat O, Germain M, Glorot X, Goodfellow I, Graham M, Gulcehre C, Hamel P, Harlouchet I, Heng JP, Hidasi B, Honari S, Jain A, Jean S, Jia K, Korobov M, Kulkarni V, Lamb A, Lamblin P, Larsen E, Laurent C, Lee S, Lefrancois S, Lemieux S, Léonard N, Lin Z, Livezey JA, Lorenz C, Lowin J, Ma Q, Manzagol PA, Mastropietro O, McGibbon RT, Memisevic R, van Merriënboer B, Michalski V, Mirza M, Orlandi A, Pal C, Pascanu R, Pezeshki M, Raffel C, Renshaw D, Rocklin M, Romero A, Roth M, Sadowski P, Salvatier J, Savard F, Schlüter J, Schulman J, Schwartz G, Serban IV, Serdyuk D, Shabanian S, Simon E, Spieckermann S, Subramanyam SR, Sygnowski J, Tanguay J, van Tulder G, Turian J, Urban S, Vincent P, Visin F, de Vries H, Warde-Farley D, Webb DJ, Willson M, Xu K, Xue L, Yao L, Zhang S, Zhang Y (2016) Theano: A Python framework for fast computation of mathematical expressions. arXiv:1605.02688

  3. Amos B, Ludwiczuk B, Satyanarayanan M (2016) Openface: A general-purpose face recognition library with mobile applications. Technical report, CMU-CS-16-118, CMU School of Computer Science

  4. Bahrampour S, Ramakrishnan N, Schott L, Shah M (2015) Comparative study of deep learning software frameworks. arXiv:1511.06435

  5. Belhumeur PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720. https://doi.org/10.1109/34.598228

    Article  Google Scholar 

  6. Collobert R, Kavukcuoglu K, Farabet C (2011) Torch7: A matlab-like environment for machine learning. In: BigLearn, NIPS Workshop, EPFL-CONF-192376

  7. Gao Y, Lee HJ (2015) Viewpoint unconstrained face recognition based on affine local descriptors and probabilistic similarity. J Inf Process Syst 11(4):643–654

    Google Scholar 

  8. Han S, Lee IY, Ahn JH (2016) Two-dimensional joint bayesian method for face verification. J Inf Process Syst 12(3):381–391

    Google Scholar 

  9. Hassner T, Harel S, Paz E, Enbar R (2015) Effective face frontalization in unconstrained images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 4295–4304

  10. Hsu HJ, Chen KT (2015) Face recognition on drones: Issues and limitations. In: Proceedings of the 1st Workshop on Micro Aerial Vehicle Networks, Systems, and Applications for Civilian Use, ACM, New York, NY, USA, DroNet ’15, pp 39–44, https://doi.org/10.1145/2750675.2750679

  11. Huang GB, Ramesh M, Berg T, Learned-Miller E (2007) Labeled faces in the wild: a database for studying face recognition in unconstrained environments. Technical report 07-49, University of Massachusetts, Amherst

  12. Jafri R, Arabnia HR (2009) A survey of face recognition techniques. J Inf Process Syst 5(2):41–68. https://doi.org/10.3745/JIPS.2009.5.2.041

    Article  Google Scholar 

  13. Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T (2014) Caffe: Convolutional architecture for fast feature embedding. arXiv:1408.5093

  14. Jiang Z, Lin Y, Li S (2013) Accelerating face recognition for large data applications in visual internet of things. Inf Technol J 12:1143–1151

    Article  Google Scholar 

  15. Kazemi V, Sullivan J (2014) One millisecond face alignment with an ensemble of regression trees. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 1867–1874

  16. Kumar N, Berg AC, Belhumeur PN, Nayar SK (2009) Attribute and simile classifiers for face verification. In: IEEE 12th International Conference on Computer Vision, 2009, pp 365–372, https://doi.org/10.1109/ICCV.2009.5459250

  17. Learned-Miller GBHE (2014) Labeled faces in the wild: updates and new reporting procedures. Technical report UM-CS-2014-003, University of Massachusetts, Amherst

  18. Parkhi OM, Vedaldi A, Zisserman A (2015) Deep face recognition. In: Proceedings of the British Machine Vision, vol 1

  19. Pech-Pacheco JL, Cristóbal G, Chamorro-Martinez J, Fernández-Valdivia J (2000) Diatom autofocusing in brightfield microscopy: a comparative study. In: Proceedings of 15th International Conference on Pattern Recognition, vol 3, pp 314–317

  20. Schroff F, Kalenichenko D, Philbin J (2015) Facenet: A unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 815–823

  21. Soyata T, Muraleedharan R, Funai C, Kwon M, Heinzelman W (2012) Cloud-vision: Real-time face recognition using a mobile-cloudlet-cloud acceleration architecture. In: IEEE Symposium on Computers and Communications (ISCC), 2012, pp 59–66, https://doi.org/10.1109/ISCC.2012.6249269

  22. Taigman Y, Yang M, Ranzato M, Wolf L (2014) Deepface: Closing the gap to human-level performance in face verification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 1701–1708

  23. Turk MA, Pentland AP (1991) Face recognition using eigenfaces. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1991, pp 586–591, https://doi.org/10.1109/CVPR.1991.139758

  24. Wang YC, Cheng KT (2011) Energy-optimized mapping of application to smartphone platform—a case study of mobile face recognition. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp 84–89, https://doi.org/10.1109/CVPRW.2011.5981820

  25. Wu X, He R, Sun Z, Tan T (2015) A light cnn for deep face representation with noisy labels. arXiv:1511.02683

  26. Ye P, Yu M, Wu M (2015) Implementation: mobile face identity authentication system on android platforms. Int J Secur Appl 9:51–60

    Google Scholar 

  27. Yu D, Eversole A, Seltzer M, Yao K, Kuchaiev O, Zhang Y, Seide F, Huang Z, Guenter B, Wang H, Droppo J, Zweig G, Rossbach C, Gao J, Stolcke A, Currey J, Slaney M, Chen G, Agarwal A, Basoglu C, Padmilac M, Kamenev A, Ivanov V, Cypher S, Parthasarathi H, Mitra B, Peng B, Huang X (2014) An introduction to computational networks and the computational network toolkit. Technical report, https://www.microsoft.com/en-us/research/product/cognitive-toolkit/

Download references

Acknowledgements

This work was supported by Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea Government (MSIT) (No. 2015-0-00168, Development of Universal Authentication Platform Technology with Context-Aware Multi-Factor Authentication and Digital Signature and No. 2016-0-00109, Development of Video Crowd Sourcing Technology for Citizen Participating-Social Safety Services).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung-Soo Lim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, S.H., Kim, GW. & Lim, KS. Compact deep learned feature-based face recognition for Visual Internet of Things. J Supercomput 74, 6729–6741 (2018). https://doi.org/10.1007/s11227-017-2198-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-017-2198-0

Keywords

Navigation