Skip to main content
Log in

SDN-based resource allocation for heterogeneous LTE and WLAN multi-radio networks

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

To meet increasing bandwidth demand, cellular network operators have increasingly deployed wireless local area networks (WLANs) on top of their cellular networks [e.g., long term evolution (LTE)]. State-of-the-art smartphones can utilize such heterogeneous LTE and WLAN radio bandwidth by operating the multi-radio interfaces simultaneously. This paper investigates how such heterogeneous radio bandwidth should be controlled and allocated to multi-radio user devices. A software-defined networking (SDN)-based resource allocation framework is proposed that can properly orchestrate heterogeneous radio bandwidth in emerging LTE/WLAN multi-radio networks in a centralized and holistic manner. The proposed framework is implemented and evaluated in a computing environment that combines a real SDN controller with simulated network forwarding entities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cisco (2015) Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update 2014–2019. Technical report

  2. 3GPP TS 23.402 (2015) Architecture Enhancements for Non-3GPP Accesses. Version 13.4.0

  3. Oliva A et al (2011) IP flow mobility: smart traffic offload for future wireless networks. IEEE Commun Mag 49(10):124–132

    Article  MathSciNet  Google Scholar 

  4. 3GPP TS 23.261, (2015) IP Flow Mobility and Seamless Wireless Local Area Network (WLAN) Offload. Version 13.0.0

  5. Yoon W, Jang B (2013) Enhanced non-seamless WLAN offload for LTE and WLAN networks. IEEE Commun Lett 17(10):1960–1963

    Article  Google Scholar 

  6. Nirjon S, Nicoara A, Hsu CH, Singh J, Stankovic J (2012) MultiNets: policy oriented real-time switching of wireless interfaces on mobile devices. In: IEEE RTAS’12, pp 251–260

  7. Mahindra R, Viswanathan H, Sundaresan K, Arslan MY, Rangarajan S (2014) A practical traffic management system for integrated LTE-WiFi Networks. In: ACM MobiCom 189–200

  8. McKeown N, Anderson T, Balakrishnan H, Parulkar G, Peterson L, Rexford J, Shenker S, Turner J (2008) OpenFlow: enabling innovation in campus networks. ACM SIGCOMM Comput Commun Rev 38(2):69–74

    Article  Google Scholar 

  9. Jain S et al (2013) B4: experience with a globally-deployed software defined WAN. In: ACM SIGCOMM’13, pp 3–14

  10. VMware (2013) The VMware NSX network virtualization platform. Technical White Paper

  11. Jin X et al (2013) SoftCell: scalable and flexible cellular core network architecture. In: ACM CoNEXT’13, pp 163–174

  12. Nagaraj K, Katti S (2014) ProCel: smart traffic handling for a scalable software EPC. In: ACM HotSDN’14, pp 43–48

  13. Moradi M, Wu W, Li LE, Mao ZM (2014) SoftMoW: recursive and reconfigurable cellular WAN architecture. In: ACM CoNEXT’14, pp 377–390

  14. Basta A, Kellerer W, Hoffmann M, Hoffmann K, Schmidt ED (2013) A virtual SDN-enabled LTE EPC Architecture: a case study for S-/P-Gateways functions. In: SDN4FNS’13, pp 1–7

  15. Basta A, Kellerer W, Hoffmann M, Morper HJ, Hoffmann K (2014) Applying NFV and SDN to LTE mobile core gateways; the functions placement problem. In: Cell Net, pp 33–38

  16. Ali-Ahmad H et al (2013) CROWD: an SDN approach for DenseNets. In: EWSDN’13, pp 25–31

  17. Li LE, Mao ZM, Rexford J (2012) Towards software defined cellular networks. In: EWSDN’12, pp 7–12

  18. Juniper (2013) Mobile SDN: The future is virtual. White Paper

  19. Chiang M, Low SH, Calderbank AR, Doyle JC (2007) Layering as optimization decomposition. Proc IEEE 95(1):255–312

    Article  Google Scholar 

  20. Kelly FP (1997) Charging and rate control for elastic traffic. Eur Trans Telecommun 8:33–37

    Article  Google Scholar 

  21. Choi Y, Kim H, Han SW, Han Y (2010) Joint resource allocation for parallel multi-radio access in heterogeneous wireless networks. IEEE Trans Wirel Commun 9(11)

  22. Panah AY, Yeh SP, Himayat N, Talwar S (2012) Utility-based radio link assignment in multi-radio heterogeneous networks. In: GC’12 International Workshop on Emerging Technologies for LTE-Advanced and Beyond-4G

  23. Heinonen J, Partti T, Kallio M, Lappalainen K, Flinck H, Hillo J (2014) Dynamic tunnel switching for SDN-Based Cellular core networks. In: Workshop on all things cellular, pp 27–32

  24. Pentikousis K, Wang Y, Hu W (2013) Mobileflow: toward software-defined mobile networks. IEEE Commun Mag 51(7):44–53

    Article  Google Scholar 

  25. Gudipati A, Perry D, Li LE, Katti S (2013) SoftRAN: Software defined radio access network. In: ACM HotSDN’13, pp 25–30

  26. Gudipati A, Li LE, Katti S (2014) RadioVisor: a slicing plane for radio access networks. In: ACM HotSDN’14, pp 237–238

  27. Bernardos CJ et al (2014) An Architecture for software defined wireless networking. IEEE Wirel Commun 21(3):52–61

    Article  Google Scholar 

  28. Tan W, Zhang J, Peng C, Xia B, Kou Y (2014) SDN-enabled converged networks. IEEE Wirel Commun 21(6):79–85

    Article  Google Scholar 

  29. Mendonca M, Obraczka K, Turletti T (2012) The Case for softwaredefined networking in heterogeneous networked environments. In: ACM CoNEXT Student’12, pp 59–60

  30. Ali-Ahmad H, Cicconetti C, Oliva A, Mancuso V, Sama MR, Seite P, Shanmugalingam S (2013) An SDN-based network architecture for extremely dense wireless networks. In: Proceedings of SDN4FNS’13

  31. Yap KK et al (2010) Blueprint for Introducing Innovation into Wireless Mobile Networks. In: ACM VISA’10, pp 25–32

  32. Chen T, Zhang H, Chen X, Tirkkonen O (2014) SoftMobile: control evolution for future heterogeneous mobile networks. IEEE Wirel Commun 21(6):70–78

    Article  Google Scholar 

  33. Lantz B, Heller B, McKeown N (2010) A network in a laptop: rapid prototyping for software-defined networks. In: ACM Hotnets, pp 1–6

  34. Gupta M, Sommers J, Barford P (2013) Fast, Accurate Simulation for SDN Prototyping. In: ACM HotSDN, pp 31–36

  35. Klein D, Jarschel M (2013) An Openflow extension for the OMNeT++ INET framework. In: SimuTools, pp 322–329

  36. Wang SY, Chou CL, Yang CM (2013) Estinet open flow network simulator and emulator. IEEE Commun Mag 51(9):110–117

    Article  Google Scholar 

  37. ns-3. http://www.nsnam.org/. Accessed 20 Dec 2013

  38. OpenStack. http://www.openstack.org/

  39. Pfaff B, Pettit J, Koponen T, Jackson E, Zhou A, Rajahalme J, Gross J, Wang A, Stringer J, Shelar P, Amidon K, Casado M (2015) The Design and implementation of Open vSwitch. In: Usenix NSDI

  40. Indigo. http://www.projectfloodlight.org/indigo/

  41. Lee B, Park SH, Shin J, Yang S (2014) IRIS: the Openflow-based recursive SDN controller. In: International Conference on Advanced Communication Technology (ICACT), pp 1227–1231

  42. Park SH, Lee B, You J, Shin J, Kim T, Yang S (2014) RAON: recursive abstraction of OpenFlow networks. In: European Workshop on Software Defined Networks, pp 115–116

  43. 3GPP TS 36.300, (2015) Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN). Overall description. Version 12(7)

  44. Bertsekas DP, Tsitsiklis JN (1989) Parallel and distributed computation: numerical methods. Prentice-Hall, USA

    MATH  Google Scholar 

  45. Lin X, Shroff N (2006) Utility maximization for communication networks with multipath routing. IEEE Trans Autom Control 51(5):766–781

  46. Li Y, Zhou L, Yang Y, Chao HC (2011) Architecture for joint multi-path routing and scheduling in wireless mesh networks. Mathe Comput Model 53:458–470

    Article  MATH  Google Scholar 

  47. Shi H, Prasad RV, Onur E, Niemegeers IGMM (2014) Fairness in wireless networks—issues, measures and challenges. IEEE Commun Surv Tutor 16:5–24

    Article  Google Scholar 

  48. Mo J, Walrand J (2000) Fair end-to-end window-based congestion control. IEEE/ACM Trans Netw 8(5):556–567

    Article  Google Scholar 

  49. McCormick B, Kelly F, Plante P, Gunning P, Ashwood-Smith P (2014) Real time alpha-fairness based traffic engineering. In: ACM HotSDN, pp 199–200

  50. Bertsimas D, Farias VF, Trichakis N (2012) On the efficiency-fairness trade-off. Manag Sci 58(12):2234–2250

    Article  Google Scholar 

  51. Jarschel M, Oechsner S, Schlosser D, Pries R, Goll S, Tran-Gia P (2011) Modeling and performance evaluation of an openflow architecture. In: Teletraffic congress (ITC), pp 1–7

  52. Mahmood K, Chilwan A, sterb ON, Jarschel M (2014) On The Modeling of OpenFlow-based SDNs: The Single Node Case, arXiv

  53. Ismail M, Zhuang W (2012) A distributed multi-service resource allocation algorithm in heterogeneous wireless access medium. IEEE JSAC 30(2):425–432

    Google Scholar 

  54. Huawei (2015) Hetnet: the future of mobile networking. White Paper

Download references

Acknowledgments

This work was supported by Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIP) (B0101-15-233, Smart Networking Core Technology Development). This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Education) (NRF-2015R1D1A1A01056606).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wonyong Yoon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, S., Yoon, W. SDN-based resource allocation for heterogeneous LTE and WLAN multi-radio networks. J Supercomput 72, 1342–1362 (2016). https://doi.org/10.1007/s11227-016-1662-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-016-1662-6

Keywords

Navigation