Skip to main content
Log in

Neighbor stability-based VANET clustering for urban vehicular environments

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

In this paper, we propose a neighbor stability-based VANET clustering (NSVC) that can efficiently deliver data in urban vehicular environments. The salient features of urban vehicles are their high mobility and unpredictable direction of movement, so vehicle-to-vehicle and vehicle-to-infrastructure (V2X) communication should take into consideration the frequent changes in the topology of vehicular ad hoc networks (VANETs). These technical challenges are addressed with NSVC by including a neighbor stability-based VANET clustering scheme and the corresponding supplementary transmission scheduling method. Thereby, NSVC supports fast cluster formation, minimizes the number of cluster head elections, and moreover guarantees the reliable delivery of data for emergency messages. The results of the simulation indicate that NSVC achieves better network performance when compared to existing approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Jayavardhana G, Rajkumar B, Slaven M, Marimuthu P (2013) Internet of Things (IoT): a vision, architectural elements, and future directions. Future Gener Comp Sy 29(7):1645–1660. doi:10.1016/j.future.2013.01.010

    Article  Google Scholar 

  2. Kim EJ, Youm S (2013) Machine-to-machine platform architecture for horizontal service integration. EURASIP J Wirel Commun 2013(1):1–9. doi:10.1186/1687-1499-2013-79

    Article  MathSciNet  Google Scholar 

  3. Atzori L, Iera A, Morabito G (2010) The Internet of things: a survey. Comput Netw 54(15):2787–2805. doi:10.1016/j.comnet.2010.05.010

    Article  MATH  Google Scholar 

  4. Task Group P (2009) IEEE draft amendment to standard for information technology—telecommunications and information exchange between systems—local and metropolitan networks—specific requirements—part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications: Amendment: Wireless access in vehicular environments. IEEE 802.11p Draft 9.0

  5. Uzcategui R, Acosta-Marum G (2009) WAVE: a tutorial. IEEE Commun Mag 47(5):126–133. doi:10.1109/MCOM.2009.4939288

    Article  Google Scholar 

  6. Xu Q, Mak T, Ko J, Sengupta R (2004) Vehicle-to-vehicle safety messaging in DSRC. In: Proceedings of 1st ACM international workshop on Vehicular ad hoc networks, pp 19–28. doi:10.1145/1023875.1023879

  7. Bai F, Stancil DD, Krishnan H (2010) Toward understanding characteristics of dedicated short range communications (DSRC) from a perspective of vehicular network engineers. In: Proceedings of 16th annual international conference on mobile computing and networking, pp 329–340. doi:10.1145/1859995.1860033

  8. Lee D, Chang SW, Lee SS (2015) Analysis and design on efficient message relay methods in VANET. Multimed Tools Appl 74(16):6331–6340. doi:10.1007/s11042-014-2107-y

  9. Vinel A (2012) 3GPP LTE versus IEEE 802.11 p/WAVE: which technology is able to support cooperative vehicular safety applications? IEEE Wirel Commun Lett 1(2):125–128. doi:10.1109/WCL.2012.022012.120073

    Article  Google Scholar 

  10. Jarupan B, Ekici E (2009) Location-and delay-aware cross-layer communication in V2I multihop vehicular networks. IEEE Commun Mag 47(11):112–118. doi:10.1109/MCOM.2009.5307474

    Article  Google Scholar 

  11. Lin CR, Gerla M (1997) Adaptive clustering for mobile wireless networks. IEEE J Sel Area Commun 15(7):1265–1275. doi:10.1109/49.622910

    Article  Google Scholar 

  12. Basu P, Khan N, Little, TD (2001) A mobility based metric for clustering in mobile ad hoc networks. In: Proceedings of international conference on computing systems workshop, pp 413–418. doi:10.1109/CDCS.2001.918738

  13. Li W (2011) Network clustering in vehicular communication networks. Dissertation, University of Toronto

  14. Hamid RA, Reza EA, Abolfazl D, Atefe P (2015) A cluster-based vehicular cloud architecture with learning-based resource management. J Supercomput 71(4):1401–1426. doi:10.1007/s11227-014-1370-z

    Article  Google Scholar 

  15. Kwon JH, Kim EJ (2015) Adaptive multi-channel allocation for vehicular infrastructure mesh systems. Multimed Tools Appl 74(5):1593–1609. doi:10.1007/s11042-013-1752-x

    Article  MathSciNet  Google Scholar 

  16. Omar HA, Zhuang W, Li L (2013) VeMAC: A TDMA-based MAC protocol for reliable broadcast in VANETs. IEEE T Mobile Comput 12(9):1724–1736. doi:10.1109/TMC.2012.142

    Article  Google Scholar 

  17. Singh JP, Bali RS (2015) A hybrid backbone based clustering algorithm for vehicular ad-hoc networks. Procedia Comput Sci 46:1005–1013. doi:10.1016/j.procs.2015.01.011

    Article  Google Scholar 

  18. Kwon JH, Kwon C, Kim EJ (2015) Neighbor mobility-based clustering scheme for vehicular ad hoc networks. In: Proceedings of international conference on PlatCon-15, pp 31–32. doi:10.1109/PlatCon.2015.19

  19. (2003) IEEE Standard for information technology—telecommunications and information exchange between systems—local and metropolitan area networks—specific requirements—Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. doi:10.1109/IEEESTD.2003.95617

  20. Yoo J (2015) Receiver-centric physical carrier sensing for vehicular ad hoc networks. Multimed Tools Appl 74(7):2405–2415. doi:10.1007/s11042-014-1851-3

    Article  Google Scholar 

  21. Kim EJ, In J, Youm S, Kang CH (2012) Delay attack-resilient clock synchronization for wireless sensor networks. IEICE Trans Inf 95(1):188–191. doi:10.1587/transinf.E95.D.188

    Article  Google Scholar 

  22. ETSI TR 102 861 V1.1.1 (2012) Intelligent Transport Systems (ITS); STDMA recommended parameters and settings for cooperative ITS; access layer part

  23. ETSI TR 102 862 V1.1.1 (2011) Intelligent Transport Systems (ITS); Performance Evaluation of Self-Organizing TDMA as Medium Access Control Method Applied to ITS; Access Layer Part

  24. Tsai MF, Wang PC, Shieh CK, Hwang WS, Chilamkurti N, Rho S, Lee YS (2015) Improving positioning accuracy for VANET in real city environments. J Supercomput 71(6):1975–1995. doi:10.1007/s11227-014-1215-9

    Article  Google Scholar 

  25. Chu IC, Chen PY, Chen WT (2012) An IEEE 802.11p Based distributed channel assignment scheme considering emergency message dissemination. In: Proceedings of vehicular technology conference, pp 1–5. doi:10.1109/VETECS.2012.6240201

Download references

Acknowledgments

This research was supported in part by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2014R1A1A2057641), by the ICT R&D program of MSIP/IITP [B0101-14-0059, Human Resource Development Program for Future Internet], and by the MSIP (Ministry of Science, ICT and Future Planning), Korea, under the ITRC (Information Technology Research Center) support program (IITP-2015-R0992-15-1006) supervised by the IITP (Institute for Information & communications Technology Promotion).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eui-Jik Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, JH., Chang, H.S., Shon, T. et al. Neighbor stability-based VANET clustering for urban vehicular environments. J Supercomput 72, 161–176 (2016). https://doi.org/10.1007/s11227-015-1517-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-015-1517-6

Keywords

Navigation