Skip to main content
Log in

Improved extra group network: a new fault-tolerant multistage interconnection network

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Supersystems are shown to provide enough computational power to solve complex problems on a real-time basis. In all these systems, the computational parallelism is obtained from multiple processors. Multistage interconnection networks (MINs) play a vital role on the performance of these multiprocessor systems. This paper introduces a new fault-tolerant MIN named as improved extra group network (IEGN). IEGN is designed by existing extra group (EGN) network, which is a regular multipath network with limited fault tolerance. IEGN provides four times more paths between any source–destination pairs compared with EGN. The performance of IEGN has been evaluated in terms of permutation capability, fault tolerance, reliability, path length, and cost. It has also been proved that the IEGN can achieve better results in terms of fault tolerance, reliability, path length and cost-effectiveness, in comparison to known networks, namely, EGN, augmented baseline network, augmented shuffle-exchange network, fault-tolerant double tree, Benes network, and Replicated MIN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51

Similar content being viewed by others

Abbreviations

IN:

Interconnection network

MIN:

Multistage interconnection network

IEGN:

Improved extra group network

EGN:

Extra group network

ABN:

Augmented baseline network

ASEN:

Augmented shuffle-exchange network

MABN:

Modified augmented baseline network

FDOT:

Fault-tolerant double tree network

PCT:

Perfect connection techniques

BP:

Basic path

MP:

Main path

AP:

Auxiliary path

SE:

Switching element

NOBP:

Number of basic path

NOAP:

Number of auxiliary path

LOMP:

Length of main path

LOAP:

Length of auxiliary path

LOBP:

Length of basic path

PLE:

Path length-effectiveness

SC:

Switching component

MSFT:

Maximum number of switching components failures tolerated

UB:

Upper bound

LB:

Lower bound

MUX:

Multiplexer

DMUX:

Demultiplexer

CE:

Cost-effectiveness

RBD:

Reliability block diagram

References

  1. Blake JT, Trivedi KS (1989) Reliability analysis of interconnection networks using hierarchical composition. Reliab IEEE Tran 38(1):111–120

    Article  Google Scholar 

  2. Agrawal DP (1983) Graph theoretical analysis and design of multistage interconnection networks. Computers IEEE Trans 100(7):637–648

    Article  Google Scholar 

  3. Massini A (2003) All-to-all personalized communication on multistage interconnection networks. Discrete Appl Math 128(2):435–446

    Article  MATH  MathSciNet  Google Scholar 

  4. Adams III GB, Howard JS (1982) The extra stage cube: a fault-tolerant interconnection network for supersystems. Computers IEEE Trans 100(5):443–454

    Google Scholar 

  5. Blake JT, Trivedi KS (1989) Multistage interconnection network reliability. Computers IEEE Trans 38(11):1600–1604

    Article  Google Scholar 

  6. Bhardwaj VP, Nitin N (2013) Message broadcasting via a new fault tolerant irregular advance omega network in faulty and nonfaulty network environments. J Electr Computer Eng 6:1–16

    Google Scholar 

  7. Garhwal S, Srivastava N (2011) Designing a fault-tolerant fully-chained combining switches multi-stage interconnection network with disjoint paths. J Supercomput 55(3):400–431

    Google Scholar 

  8. Bhuyan LN, Yang Q, Agrawal DP (1989) Performance of multiprocessor interconnection networks. Computer 22(2):25–37

    Google Scholar 

  9. Newman P (1989) Fast packet switching for integrated services., Computer LaboratoryUniversity of Cambridge, Cambridge

    Google Scholar 

  10. Bansal PK, Joshi RC, Kuldip S (1994) On a fault-tolerant multistage interconnection network. Computers Electr Eng 20(4):335–345

    Google Scholar 

  11. Kumar VP, Reddy SM (1985) Design and analysis of fault-tolerant multistage interconnection networks with low link complexity. In: Proceedings of 12th International Symposium on Computer Architecture, June 1985, pp 376–386

  12. Kumar VP, Reddy SM (1987) Augmented shuffle-exchange multistage interconnection networks. In: IEEE Computer, June 1987, pp 30–40

  13. Wei S, Gyungho L (1988) Extra group network: a cost-effective fault-tolerant multistage interconnection network. In: ACM SIGARCH computer architecture news, vol 16, no. 2, IEEE Computer Society Press

  14. Bansal PK et al (1991) Fault tolerant double tree multistage interconnection network. In: INFOCOM’91. Proceedings. Tenth Annual Joint Conference of the IEEE computer and communications societies. Networking in the 90s, IEEE

  15. Zarandi MA et al (2012) Performance analysis of a fault tolerant multistage interconnection network with backpressure blocking mechanism. J Am Sci 8(7):127–134

    Google Scholar 

  16. Sadawarti H, Bansal PK (2007) Fault tolerant irregular augmented shuffle network. In: Proceedings of the 2007 annual Conference on International Conference on computer engineering and applications. World Scientific and Engineering Academy and Society (WSEAS)

  17. Cheema KK, Rinkle A (2009) Design scheme and performance evaluation of a new fault-tolerant multistage interconnection network. Int J Computer Sci Netw Sec 9(9):270–276

    Google Scholar 

  18. Aggarwal R, Kaur L (2008) On reliability analysis of fault-tolerant multistage interconnection networks. Int J Computer Sci Sec (IJCSS) 2(4):01–08

    Google Scholar 

  19. Aggarwal RR (2012) Design and performance evaluation of a new irregular fault-tolerant multistage interconnection network. Int J Computer Sci 9

  20. Das N, Mukhopadhyaya K, Dattagupta J (2000) O(n) routing in rearrangeable networks. J Syst Arch 46:529–542

    Google Scholar 

  21. Jena S et al (2012) Reliability analysis of multi path multistage interconnection networks. Int J Computer Sci Inf Technol 4(1):63–74

    Google Scholar 

  22. Subramanian A (2008) Efficient algorithms and methods to solve dynamic MINs stability problem using stable matching with complete ties. J Discrete Alg 6(3):353–380

    Article  MATH  Google Scholar 

  23. Gunawan I (2008) Reliability analysis of shuffle-exchange network systems. Reliab Eng Syst Saf 93(2):271–276

    Article  MathSciNet  Google Scholar 

  24. Gupta A, Bansal PK (2011) Proposed fault tolerant new irregular augmented shuffle network. Malaysian J Computer Sci 24(1):47

    Google Scholar 

  25. Kaur K, Kaur P, Sadawarti H (2011) Performance analysis of new irregular multistage interconnection network. Int J Adv Eng Sci Technol 9:82–86

    Google Scholar 

  26. Ghai M, Vinay C, Karamjit KC (2010) Performance analysis of fault-tolerant irregular baseline multistage interconnection network. Int J Computer Sci Eng 2(9):3079–3084

    Google Scholar 

  27. Aggarwal R, Kaur L, Aggarwal H (2009) Design and reliability analysis of a new fault-tolerant multistage interconnection network. Icgst-cnir J 8(2):17–23

    Google Scholar 

  28. Vasiliadis DC, George ER, Costas V (2013) Modelling and performance study of finite-buffered blocking multistage interconnection networks supporting natively 2-class priority routing traffic. J Netw Computer Appl 36(2):723–737

    Google Scholar 

  29. Garofalakis J, Stergiou E (2011) Mechanisms and analysis for supporting multicast traffic by using multilayer multistage interconnection networks. Int J Netw Manag 21(2):130–146

    Google Scholar 

  30. Diab H, Tabbara H, Mansour N (2000) Simulation of dynamic input buffer space in multistage interconnection networks. Adv Eng Softw 31(1):13–24

    Article  Google Scholar 

  31. Benes VE (1965) Mathematical theory of connecting networks and telephone traffic, vol 68. Academic press, New York

  32. Du DZ (2001) Analysis of shuffle. Exchange networks under permutation trafic. Switch Net: Recent Adv 5:215

    Article  Google Scholar 

  33. Çam H (2003) Rearrangeability of (2n–1)-stage shuffle-exchange networks. SIAM J Comput 32(3):557–585

    Google Scholar 

  34. Dai H, Shen X (2008) Rearrangeability of 7-stage 16\(\times \) 16 shuffle exchange networks. Front Electr Electron Eng China 3(4):440–458

    Google Scholar 

  35. Clos C (1953) A study of non-blocking switching networks. Bell Syst Tech J 32(2):406–424

    Google Scholar 

  36. Veglis A, Pomportsis A (2001) Dependability evaluation of interconnection networks. Computers Electr Eng 27(3):239–263

    Article  MATH  Google Scholar 

  37. Sibai FN (2011) Design and evaluation of low latency interconnection networks for real-time many-core embedded systems. Computers Electr Eng 37(6):958–972

  38. Chadi AA et al (2006) A universal performance factor for multi-criteria evaluation of multistage interconnection networks. Future Gen Computer Syst 22.7:794–804

    Google Scholar 

  39. Cuda D, Giaccone P, Montalto M (2012) Design and control of next generation distribution frames. Computer Netw 56(13):3110–3122

    Google Scholar 

  40. Sheu TL, Lin W, Das CR (1995) Distributed fault diagnosis in multistage network-based multiprocessors. IEEE Trans Computers 44(9):1085–1095

    Article  MATH  Google Scholar 

  41. Leung YW (1993) On-line fault identification in multistage interconnection networks. Parallel Comput 19(6):693–702

    Article  MATH  Google Scholar 

  42. Chaki N, Bhattacharya S (2000) High level net models: a tool for permutation mapping and fault detection in multistage interconnection network. In: TENCON 2000. Proceedings (vol 2, pp 248–252). IEEE

  43. Choi M, Park N, Lombardi F (2003) Modeling and analysis of fault tolerant multistage interconnection networks. IEEE Trans Instrum Meas 52(5):1509–1519

    Article  Google Scholar 

  44. Gunawan I (2008) Redundant paths and reliability bounds in gamma networks. Appl Math Model 32(4):588–594

    Google Scholar 

  45. Koren I, Mani Krishna C (2010) Fault-tolerant systems. Morgan Kaufmann Publishers Inc. San Francisco, CA

  46. Fard NS, Gunawan I (2006) Reliability bounds for large multistage interconnection networks. Appl Parallel Comput. Springer, Berlin Heidelberg

  47. Bansal PK, Kuldip S, Joshi RC (1993) Reliability and performance analysis of a modular multistage interconnection network. Microelectron Reliab 33(4):529–534

    Article  Google Scholar 

  48. Shooman ML (2001) Reliability of computer systems and networks: fault tolerance, Analysis, and design. Wiley-Interscience, New York

  49. Wang W, Mingxiao J (2004) Generalized decomposition method for complex systems. In: Reliability and maintainability, 2004 Annual Symposium-RAMS. IEEE

  50. Distefano S (2009) Reliability and dependability modeling and analysis of dynamic aspects in complex systems. In: Dpendable, autonomic and secure computing, 2009. DASC’09. Eighth IEEE International Conference on IEEE

  51. Birolini A (2007) Reliability engineering: theory and practice. Springer, Berlin Heidelberg

  52. Tutsch D, Hommel G (2008) MLMIN: a multicore processor and parallel computer network topology for multicast. Computers Oper Res 35(3):3807–3821

    Article  MATH  Google Scholar 

  53. Yang Y, Wang J (2005) A new design for wide-sense nonblocking multicast switching networks. IEEE Trans Commun 53(3):497–504

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Jahanshahi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bistouni, F., Jahanshahi, M. Improved extra group network: a new fault-tolerant multistage interconnection network. J Supercomput 69, 161–199 (2014). https://doi.org/10.1007/s11227-014-1132-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-014-1132-y

Keywords

Navigation