Skip to main content
Log in

Three-dimensional Petersen-torus network: a fixed-degree network for massively parallel computers

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

A two-dimensional (2D) Petersen-torus network is a mesh-class fixed-degree network designed using a Petersen graph, which has a maximum of 10 nodes when the degree is 3 and the diameter is 2 in a (d,k)-graph problem. Here, I propose a new three-dimensional (3D) Petersen-torus network that extends the 2D Petersen-torus network without increasing the degree. The 3D Petersen-torus has the same number of nodes (N). The 3D Petersen-torus is better than the well-known 3D torus and 3D honeycomb mesh in terms of diameter and network cost. The 3D Petersen-torus network is better than the hypercube-like and star graph-like networks in terms of extendibility. Hence, the proposed network may serve as the foundation for realizing a high-performance multicomputer. In this paper, the optimal routing algorithm, Hamilton cycle, and several basic attributes are discussed. Furthermore, a comparison with a mesh-class fixed-degree 3D network is made for degree, diameter, and network cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ergu D, Kou G, Peng Y, Shi Y, Shi Y (2011) The analytic hierarchy process: Task scheduling and resource allocation in cloud computing environment. J Supercomput. doi:10.1007/s11227-011-0625-1

    MATH  Google Scholar 

  2. Parhami B, Kwai D-M (2001) A unified formulation of honeycomb and diamond networks. IEEE Trans Parallel Distrib Syst 12(1):74–80

    Article  Google Scholar 

  3. Ni LM, McKinley PK (1993) A survey of wormhole routing techniques in direct networks. IEEE Comput 26(2):62–76

    Article  Google Scholar 

  4. Parhami B, Rakov M (2005) Perfect difference networks and related interconnection structures for parallel and distributed systems. IEEE Trans Parallel Distrib Syst 16(8):714–724

    Article  Google Scholar 

  5. Parhami B, Yeh C-H (2000) Why network diameter is still important. In: Proc int’l conf comm in computing, pp 271–274

    Google Scholar 

  6. Saad Y, Schultz MH (1988) Topological properties of hypercubes. IEEE Trans Comput 37(7):867–872

    Article  Google Scholar 

  7. Mendia VE, Sarkar D (1992) Optimal broadcasting on the star graph. IEEE Trans Parallel Distrib Syst 3(4):389–396

    Article  MathSciNet  Google Scholar 

  8. Tang KW, Padubidri SA (1994) Diagonal and toroidal mesh networks. IEEE Trans Comput 43(7):815–826

    Article  MATH  Google Scholar 

  9. Latifi S, Srimani PK (1998) A fixed degree regular networks for massively parallel systems. J Supercomput 12(3):277–291

    Article  MATH  Google Scholar 

  10. Zhou S, Du N, Chen B (2006) A new family of interconnection networks of odd fixed degrees. J Parallel Distrib Comput 66(5):698–704

    Article  MATH  Google Scholar 

  11. Moraveji R, Sarbazi-Azad H, Zomaya AY (2011) Performance modeling of Cartesian product networks. J Parallel Distrib Comput 71(1):105–113

    Article  MATH  Google Scholar 

  12. Ghose K, Desai KR (1995) Hierarchical cubic network. IEEE Trans Parallel Distrib Syst 6(4), 427–435

    Article  Google Scholar 

  13. EI-Amawy A, Latifi S (1991) Properties and performances of folded hypercubes. IEEE Trans Parallel Distrib Syst 2(1):31–42

    Article  Google Scholar 

  14. Efe K (1991) A variation on the hypercube with lower diameter. IEEE Trans Comput 40(11):1312–1316

    Article  Google Scholar 

  15. Park J-H (1992) Circulant graphs and their application to communication networks. PhD Thesis, Dept of Computer Science, KAIST, Taejon, Korea

  16. Yeh C-H, Varvarigos E (1996) Macro-star networks: Efficient low-degree alternatives to star graphs for large-scale parallel architectures. In: Frontier’96, symp on the frontiers of massively parallel computation

    Google Scholar 

  17. Latifi S, Srimani PK (1996) Transposition networks as a class of fault-tolerant robust networks. IEEE Trans Comput 45(2):230–238

    Article  MathSciNet  MATH  Google Scholar 

  18. Lee HO, Kim JS, Park KW, Seo JH (2005) Matrix star graphs: A new interconnection network based on matrix operations. In: ACSAC 2005. LNCS, vol 3740, pp 478–487

    Google Scholar 

  19. Stojmenovic I (1997) Honeycomb network: Topological properties and commnication algorithms. IEEE Trans Parallel Distrib Syst 8(10):1036–1042

    Article  Google Scholar 

  20. Chen MS, Shin KG (1990) Addressing, routing, and broadcasting in hexagonal mesh multiprocessors. IEEE Trans Comput 39(1):10–18

    Article  MathSciNet  Google Scholar 

  21. Decayeux C, Seme D (2005) 3D hexagonal network: Modeling, topological properties, addressing scheme, and optimal routing algorithm. IEEE Trans Parallel Distrib Syst 16(9):875–884

    Article  Google Scholar 

  22. Scott SL, Thorson G (1996) The Cray T3E network: Adaptive routing in a high performance 3D toms. In: HOT interconnects IV, Stanford University

    Google Scholar 

  23. Carle J, Myoupo JF, Stojmenovic I (2001) Higher dimensional honeycomb networks. J Interconnect Netw 2(4):391–420

    Article  Google Scholar 

  24. Nguyen J, Pezaris J, Pratt GA, Ward S (1994) Three-dimensional network topologies. In: Proceedings of the first international workshop on parallel computer routing and communication, pp 101–115

    Chapter  Google Scholar 

  25. Cray Inc (2008) Cray XT3 datasheet. http://www.cray.com/downloads/Cray_XT3_Datasheet.pdf

  26. Cray Inc (2008) Cray XT4 datasheet. http://www.cray.com/downloads/Cray_XT4_Datasheet.pdf

  27. Choo H, Yoo S-M, Youn HY (2000) Processor scheduling and allocation for 3d torus multicomputer systems. IEEE Trans Parallel Distrib Syst 11(5):475–484

    Article  Google Scholar 

  28. Seo JH, Lee HO, Jang MS (2008) Petersen-torus networks for multicomputer systems. In: Proc int’l conf of NCM2008, vol 1, pp 567–571

    Google Scholar 

  29. Seo JH, Lee HO (2009) One-to-one embedding between hyper Petersen and Petersen-torus networks. Int J Grid Distrib Comput 2(4):27–33

    MathSciNet  Google Scholar 

  30. Seo JH, Lee HO, Jang MS (2008) Node mapping algorithm between torus and Petersen-torus networks. In: Proc int’l conf of NCM2008, vol 2, pp 540–544

    Google Scholar 

  31. Seo J-H, Lee H-O (2009) One-to-all broadcasting in Petersen-torus networks for SLA and MLA models. ETRI J 31(3):327–329

    Article  Google Scholar 

  32. Chartrand G, Wilson RJ (1985) The Petersen graph. In: Harary F, Maybee JS (eds) Graphs and applications, pp 69–100

    Google Scholar 

  33. Camara JM, Moreto M, Vallejo E, Beivide R, Miguel-Alonso J, Martínez C, Navaridas J (2010) Twisted torus topologies for enhanced interconnection networks. IEEE Trans Parallel Distrib Syst 21(12):1765–1778

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-hyun Seo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seo, Jh. Three-dimensional Petersen-torus network: a fixed-degree network for massively parallel computers. J Supercomput 64, 987–1007 (2013). https://doi.org/10.1007/s11227-011-0716-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-011-0716-z

Keywords

Navigation