Skip to main content

Advertisement

Log in

Adsorption of molecular hydrogen on inorganometallic complexes B2H4M (M=Li, Be, Sc, Ti, V)

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Molecular interaction between hydrogen molecules and B2H4M (M=Li, Be, Sc, Ti, V) complexes has been studied using the DFT method (M06 functional) and 6-311++G** basis set. The hydrogen uptake capacity of the complexes considered is higher than the target set by the US Department of Energy (5.5 wt% by 2020). The metal atom bound strongly to the B2H4 substrate. Adsorption of molecular hydrogen on Be-, Ti-, and V-decorated complexes is thermodynamically possible for all the pressures and temperatures considered whereas it is unfavorable for Li-decorated complexes for all the pressure and temperatures. For the Sc-doped complexes, adsorption of molecular hydrogen is favorable below 330 K and entire pressure range considered. All the H2 adsorbed complexes are kinetically stable. For all the complexes, the interaction between the inorganometallic complexes and the H2 molecules adsorbed is attractive whereas that between adsorbed H2 molecules is repulsive. We have also performed molecular dynamics simulations to confirm the same number of H2 molecule adsorption from the simulations and DFT calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schüth F (2005) Technology: hydrogen and hydrates. Nature 434:712–713

    Article  Google Scholar 

  2. Orimo S, Nakamori Y, Eliseo R, Zuttel A, Jensen CM (2007) Complex hydrides for hydrogen storage. Chem Rev 107(10):4111−4132

    Article  Google Scholar 

  3. Liu J, Yu J, Ge Q (2011) Hydride-assisted hydrogenation of Ti- doped NaH/Al: a density functional theory study. J Phys Chem C 115(5):2522−2528

    Google Scholar 

  4. Kumar TJD, Weck PF, Balakrishnan N (2007) Evolution of small Ti clusters and the dissociative chemisorption of H2 on Ti. J Phys Chem C 111(20):7494–7500

    Article  CAS  Google Scholar 

  5. Kumar TJD, Tarakeshwar P, Balakrishnan N (2008) Structural, energetic and electronic properties of hydrogenated titanium clusters. J Chem Phys 128(19):194714

    Article  Google Scholar 

  6. Tarakeshwar P, Kumar TJD, Balakrishnan N (2008) Nature of hydrogen interaction and saturation on small titanium clusters. J Phys Chem A 112(13):2846–2854

    Article  CAS  Google Scholar 

  7. Tarakeshwar P, Kumar TJD, Balakrishnan N (2009) Hydrogen multicenter bonds and reversible hydrogen storage. J Chem Phys 130(11):114301

    Article  CAS  Google Scholar 

  8. Kumar TJD, Tarakeshwar P, Balakrishnan N (2009) Geometric and electronic structures of hydrogenated transition metal (Sc, Ti, Zr) clusters. Phys Rev B 79(20):205415

    Article  Google Scholar 

  9. Weck PF, Kumar TJD, Kim E, Balakrishnan N (2007) Computational study of hydrogen storage in organometallic compounds. J Chem Phys 126(9):094703

    Article  Google Scholar 

  10. McKeown B, Gahnem B, Msayib KJ, Budd PM et al (2006) Towards polymer-based hydrogen storage materials: engineering ultramicroporous cavities within polymers of intrinsic microporosity. Angew Chem Int Ed 45(11):1804–1807

    Article  CAS  Google Scholar 

  11. Ma LJ, Jia J, Wu HS, Ren Y (2013) Ti–η 2-(C2H2) and HC≡C–TiH as high capacity hydrogen storage media. Int J Hydrogen Energy 38(36):16185–16192

    Article  CAS  Google Scholar 

  12. Li-Juan M, Jianfeng J, Wu HS (2015) Computational investigation of hydrogen storage on scandium–acetylene system. Int J Hydrogen Energy 40(1):420–428

    Article  Google Scholar 

  13. Kalamse V, Wadnerkar N, Deshmukh A, Chaudhari A (2012) C2H2M (M=Ti, Li) complex: a possible hydrogen storage material. Int J Hydrogen Energy 37(4):3727–3732

    Article  CAS  Google Scholar 

  14. Kalamse V, Wadnerkar N, Deshmukh A, Chaudhari A (2012) Interaction of molecular hydrogen with Ni doped ethylene and acetylene complex. Int J Hydrogen Energy 37(6):5114–5121

    Article  CAS  Google Scholar 

  15. Tavhare P, Kalamse P, Bhosale R, Chaudhari A (2015) Interaction of molecular hydrogen with alkali and transition metal-doped acetylene complexes. Struct Chem 26(3):823–829

    Article  CAS  Google Scholar 

  16. Liu CS, Zeng Z (2009) Ionization-induced enhancement of hydrogen storage in metalized C2H4 and C5H5 molecules. Physical Review B 79(24):245419

    Article  Google Scholar 

  17. Durgun E, Ciraci S, Zhou W, Yildirim T (2006) Transition-metal-ethylene complexes as high-capacity hydrogen-storage media. Phys Rev Lett 97(22):226102

    Article  CAS  Google Scholar 

  18. Zhou W, Yildirim T, Durgun E, Ciraci S (2007) Hydrogen absorption properties of metal-ethylene complexes. Phys. Rev. B 76:085434

    Article  Google Scholar 

  19. Wadnerkar N, Kalamse N, Chaudhari A (2010) Higher hydrogen uptake capacity of C2H4Ti+ than C2H4Ti: a quantum chemical study. Theor Chem Accounts 127(4):285

    Article  CAS  Google Scholar 

  20. Chakraborty A, Giri S, Chattaraj PK (2011) Analyzing the efficiency of Mn–(C2H4) (M=Sc, Ti, Fe, Ni; n=1, 2) complexes as effective hydrogen storage materials. Struct Chem 22(4):823–837

    Article  CAS  Google Scholar 

  21. Phillips AB, Shivaram BS (2009) High capacity hydrogen absorption in transition-metal ethylene complexes: consequences of nanoclustering. Nanotechnology 20(20):204020

    Article  CAS  Google Scholar 

  22. Okamoto Y (2008) Can Ti2-C2H4 complex adsorb H2 molecules? J Phys Chem C 112(45):17721–17725

    Article  CAS  Google Scholar 

  23. He N, Gao T, Zhang Z, Tian X, Han H (2009) Theoretical study of structure stability, vibrational frequencies, and electronic properties of hydrogen storage in titanium–ethylene complex. J Mol Struct (THEOCHEM) 916(1):147–153

    Article  CAS  Google Scholar 

  24. Kalamse V, Wadnerkar N, Chaudhari A (2010) Hydrogen storage in C2H4V and C2H4V+ organometallic compounds. J Phys Chem C 114(10):4704

    Article  CAS  Google Scholar 

  25. Wadnerkar N, Kalamse V, Phillips AB, Shivaram BS, Chaudhari A (2011) Vibrational spectra of Ti:C2H4(nH2) and Ti:C2H4(nD2) (n=1–5) complexes and the equilibrium isotope effect: calculations and experiment. Int J Hydrogen Energy 36(16):9727–9732

    Article  CAS  Google Scholar 

  26. Wadnerkar N, Kalamse V, Chaudhari A (2012) Can ionization induce an enhancement of hydrogen storage in Ti2–C2H4 complexes? RSC Adv 2:8497–8501

    Article  CAS  Google Scholar 

  27. Phillips AB, Shivaram BS (2008) High capacity hydrogen absorption in transition metal-ethylene complexes observed via nanogravity. Phys Rev Lett 100(10):105505–105509

    Article  CAS  Google Scholar 

  28. Yasuharu Y (2008) Can Ti2-C2H4 complex adsorb H2 molecules? J Phys Chem 112(45):17721–17,725

    Google Scholar 

  29. Kiran B, Kandalam AK, Jena P (2006) Hydrogen storage and the 18- electron rule. J Chem Phys 124:224703–224709

    Article  Google Scholar 

  30. Ma LJ, Jia J, Wu HS (2015) Computational investigation of hydrogen storage on scandium Sacetylene system. Int J Hydrogen Energy 40(1):420–428

    Article  CAS  Google Scholar 

  31. Ma L, Jia J, Wu HS (2015) Computational investigation of hydrogen adsorption/desorption on Zr- η2-(C2H2) and its ion. Chem Phys 457:57–62

    Article  CAS  Google Scholar 

  32. Lei Wen H, Hong Z, Min G, Wu Dong W (2012) A potential hydrogen-storage media: C2H4 and C5H5 molecules doped with rare earth atoms. Chin Phys Lett 29(12):126801

    Article  Google Scholar 

  33. Vincent MA, Schaefer III HFJ (1981) Diborane(4) (B2H4): the boron hydride analog of ethylene. J Am Chem Soc 103(19):5677–5680

    Article  CAS  Google Scholar 

  34. Mohr RA, Lipscomb WN (1986) Structures and energies of diborane(4). Inorg Chem 25(7):1053–1057

    Article  CAS  Google Scholar 

  35. Curtiss LA, Pople JA (1989) Theoretical study of B2H4 + and B2H4. J Chem Phys 90(8):4314

    Article  CAS  Google Scholar 

  36. Ruscic B, Mayhew CA, Berkowitz (1988) Photoionization studies of (BH3)n (n=1,2). J J Chern Phys 88(9):5580

    Article  CAS  Google Scholar 

  37. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem. Accounts 120(1):215–241

    Article  CAS  Google Scholar 

  38. Schlegel HB, Iyengar SS, Li X, Millam JM Voth GA, Scuseria GE, Frisch MJ (2002) Ab initio molecular dynamics: propagating the density matrix with Gaussian orbitals. III. Comparison with Born–Oppenheimer dynamics. J Chem Phys 117(19):8694

    Article  CAS  Google Scholar 

  39. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1. Gaussian, Inc, Wallingford CT

    Google Scholar 

  40. Xantheas SS (1994) Ab initio studies of cyclic water clusters (H2O)n, n = 1–6. II. Analysis of many-body interactions. J Chem Phys 100(10):7523–7534

    Article  CAS  Google Scholar 

  41. Xantheas SS (1995) Ab initio studies of cyclic water clusters (H2O) n, n=1–6. III. Comparison of density functional with MP2 results. J Chem Phys 102(11):4505–4517

    Article  CAS  Google Scholar 

  42. Chaudhari A, Sahu PK, Lee SL (2004) Many-body interaction in glycine-(water)3 complex using density functional theory method. J Chem Phys 120(1):170–174

    Article  CAS  Google Scholar 

  43. Chaudhari A, Lee SL (2004) A computational study of microsolvation effect on ethylene glycol by density functional method. J Chem Phys 120(16):7464–7469

    Article  CAS  Google Scholar 

  44. Kalamse V, Wadnerkar N, Chaudhari A (2012) Hydrogen storage in C3Ti complex using quantum chemical methods and molecular dynamics simulations. J Mol Model 18(6):2423–2431

    Article  CAS  Google Scholar 

  45. Chaudhari A, Lee SL (2005) Density functional theory study of contribution of many-body energies to binding energy for alanine-(water)4 complex. Int J Quantum Chem 102(2):174–177

    Article  CAS  Google Scholar 

  46. Lide DR (1994) CRC handbook of chemistry and physics, New York, 75th ed

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Chaudhari.

Electronic supplementary material

ESM 1

(DOC 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konda, R., Titus, E. & Chaudhari, A. Adsorption of molecular hydrogen on inorganometallic complexes B2H4M (M=Li, Be, Sc, Ti, V). Struct Chem 29, 1593–1599 (2018). https://doi.org/10.1007/s11224-018-1128-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-018-1128-y

Keywords

Navigation