Skip to main content

Advertisement

Log in

Pressure effect on electron localization in solid lithium

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

External pressure applied to a solid material causes modifications of the bonding which can provide a chemical explanations of phase transitions. The behaviour of the Electron Localization Function (ELF) has been examined for the body-centred cubic, face-centred cubic and \(I\bar 43d-16\) phase of lithium for a series of cell volumes accounting for external hydrostatic pressures in the 0-60 GPa range. It is shown that the ELF signatures of electron localization increase with the pressure. Moreover, the number of basins per atom is the high-pressure phases is less than in the low-pressure ones and therefore the basin population are larger in high pressure modifications. These results complement the study of Marques et al. Phys Rev Lett 106:095502 (2011) carried out on the C2c b − 40 and C m c a − 24 phases stable above 85 GPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. The notation {s 1,s 2,s 3,…/p 1,p 2,…/d 1,…} specifies the number of primitives of each type in the contraction.

References

  1. Marqués M, McMahon MI, Gregoryanz E, Hanfland M, Guillaume CL, Pickard CJ, Ackland GJ, Nelmes RJ (2011) Crystal Structures of Dense Lithium: A metal-semiconductor-metal transition. Phys Rev Lett 106:095502

    Article  Google Scholar 

  2. Gavezzotti A (1994) Are crystal structures predictable? Acc Chem Res 27:309–314

    Article  CAS  Google Scholar 

  3. Guillaume CL, Gregoryanz E, Degtyareva O, McMahon MI, Hanfland, M, Evans S, Guthrie M, Sinogeikin SV, Mao HK (2011) Cold melting and solid structures of dense lithium. Nat Phys 7:211–214

    Article  CAS  Google Scholar 

  4. Matsuoka T, Shimizu K (2009) Direct observation of a pressure-induced metal-to-semiconductor transition in lithium. Nature 458:186–189

    Article  CAS  Google Scholar 

  5. Neaton JB, Ashcroft NW (1999) Pairing in dense lithium. Nature 400:141–144

    Article  CAS  Google Scholar 

  6. Rousseau R, Marx D (2000) Exploring the electronic structure of elemental lithium: from small molecules to nanoclusters. Bulk Metal, Surf Chem Eur J 6:2982–2993

    CAS  Google Scholar 

  7. Car R, Parrinello M (1985) Unified approach for molecular dynamics and density-functional theory. Chem Phys Lett :2471–2474

  8. Becke AD, Edgecombe KE (1990) A simple measure of electron localization in atomic and molecular systems. J Chem Phys 92:5397–5403

    Article  CAS  Google Scholar 

  9. Kittel C (1963) Quantum theory of solids. Wiley, New York

    Google Scholar 

  10. Ashcroft NW, Mermin ND (1976) Solid state physics Saunders College Publishing

  11. Lewis GN (1966) Valence and the structure of atoms and molecules Dover, New York

  12. Pauling L (1948) The nature of the chemical bond. Cornell University Press, Ithaca

    Google Scholar 

  13. Anderson WP, Burdett JK, Czech PT (1994) What is the metallic bond? J Am Chem Soc 116:8808–8809

    Article  CAS  Google Scholar 

  14. Allen LC, Capitani JF (1994) What is the metallic bond? J Am Chem Soc 116:8810–8810

    Article  CAS  Google Scholar 

  15. Li M, Goddard WA III (1989) Interstitial-electron model for lattice in fcc metals. Phys Rev B 40:12155–12163

    Article  CAS  Google Scholar 

  16. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  17. Martín Pendás A, Blanco MA, Costales A, Mori Sánchez P, Luaña V (1999) Non-nuclear maxima of the electron density. Phys Rev Lett 83:1930–1933

    Article  Google Scholar 

  18. Cao WL, Gatti C, MacDougall PJ, Bader RFW (1987) On the presence of nonnuclear attractors in the charge distribution of Li and Na cluster. Chem Phys Lett 141:380–385

    Article  CAS  Google Scholar 

  19. Cioslowski J (1990) Nonnuclear attractors in the Li 2 molecule. J Phys Chem 94:5496–5498

    Article  CAS  Google Scholar 

  20. Mei C, Edgecombe KE, Smith VH Jr, Heilingbrunner A (1993) Topological analysis of the charge density of solids: bcc sodium and lithium. Int J Quant Chem 48:287–293

    Article  CAS  Google Scholar 

  21. Iversen BB, Larsen FK, Souhassou M, Takata M (1995) Experimental evidence for the existence of non-nuclear maxima in the electron-density distribution of metallic beryllium. A comparative study of the maximum entropy method and the multipole refinement method. Acta Cryst B 51:580–591

    Article  Google Scholar 

  22. Silvi B, Gatti C (2000) Direct space representation of the metallic bond. J Phys Chem A 104:947–953

    Article  CAS  Google Scholar 

  23. Baranov AI, Kohout M (2008) Electron localizability for hexagonal element structures. J Comput Chem 29:2161–2171

    Article  CAS  Google Scholar 

  24. Bader RFW (1994) Principle of stationary action and the definition of a proper open system. Phys Rev B 49:13348–13356

    Article  CAS  Google Scholar 

  25. Bader RFW (2001) The zero-flux surface and the topological and quantum definition of an atom in a molecule. Theor Chem Acc 105:276–283

    Article  CAS  Google Scholar 

  26. Bader RFW (2005) The quantum mechanical basis of conceptual chemistry. Monatsh Chem 136:819–854

    Article  CAS  Google Scholar 

  27. Bader RFW (2007) Everyman’s derivation of the theory of atoms in molecules. J Phys Chem A 111:7966–7972

    Article  CAS  Google Scholar 

  28. Bader RFW (2007) The lagrangian approach to chemistry. In: Matta CF, Boyd RJ (eds) The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design. Wiley, New York, pp 37–59

  29. Martín Pendás A, Blanco MA, Francisco E (2004) Two-electron integrations in the quantum theory of atoms in molecules. J Chem Phys 120:4581–4592

    Article  Google Scholar 

  30. Martín Pendás A, Francisco E, Blanco MA (2005) Two-electron integrations in the Quantum Theory of Atoms in Molecules with correlated wave functions. J Comput Chem 26:

  31. Blanco MA, Martín Pendás A, Francisco E (2005) Interacting quantum atoms: A correlated energy decomposition scheme based on the quantum theory of atoms in molecules. J Chem Theory Comput 1:1096–1109

  32. Francisco E, Martín Pendás A, Blanco MA (2006) A molecular energy decomposition scheme for atoms in molecules. J Chem Theory Comput 2:90–102

    Article  CAS  Google Scholar 

  33. Bader RFW (1998) A bond path: A universal indicator of bonded interactions. J Phys Chem A 102:7314

    Article  CAS  Google Scholar 

  34. Bader RFW, Essén H (1984) The characterization of atomic interactions. J Chem Phys 80:1943–1960

    Article  CAS  Google Scholar 

  35. Cremer D, Kraka E (1984) Chemical bonds without bonding electron density - does the difference electron-density analysis suffice for a description of the chemical bond? Angew Chem Int Ed Engl 23:627–628

    Article  Google Scholar 

  36. Cremer D, Kraka E (1983) A description of the chemical bond in terms of local properties of the electron density and energy. Croat Chem Acta 57:1259–1281

    Google Scholar 

  37. Kraka E, Cremer D (1992) Description of chemical reactions in terms of the properties of the electron density. J Mol Struct Theochem 255:189–206

    Article  Google Scholar 

  38. Macchi P, Proserpio DM, Sironi A (1998) Experimental electron density in a transition metal dimer: Metal-metal and metal-ligand bonds. J Am Chem Soc 120:13429–13435

    Article  CAS  Google Scholar 

  39. Macchi P, Sironi A (2003) Chemical bonding in transition metal carbonyl clusters: Complementary analysis of theoretical and experimental electron densities. Coord Chem Rev 238-239:383–412

    Article  CAS  Google Scholar 

  40. Bianchi R, Gervasio G, Marabello D (2000) Experimental electron density analysis of Mn(CO) 10: Metal-metal and metal-ligand bond characterization. Inorg Chem 39:2360–2366

    Article  CAS  Google Scholar 

  41. Mori-Sánchez P, Martín Pendás A, Luaña V (2002) A classification of covalent, ionic, and metallic solids based on the electron density. J Am Chem Soc 124:14721–14723

    Article  Google Scholar 

  42. Jenkins S, Ayers P, Kirk S, Mori-Sánchez P, Martín Pendás A (2009) Bond metallicity of materials from real space charge density distributions. Chem Phys Lett 471:174–177

    Article  CAS  Google Scholar 

  43. Diner S, Claverie P (1976) Statistical and stochastic aspects of the delocalization problem in quantum mechanics. In: Chalvet O, Daudel R, Diner S, Malrieu JP (eds) Localization and delocalization in quantum chemistry, vol II. Reidel, Dordrecht, pp 395– 448

  44. Silvi B, Fourré I, Alikhani E (2005) The topological analysis of the electron localization function: a key for a position space representation of chemical bonds. Monatsh Chem 136:855–879

    Article  CAS  Google Scholar 

  45. Ayers PW (2005) Electron localization functions and local measures of the covariance. J Chem Sci 117:441–454

    Article  CAS  Google Scholar 

  46. Burdett JK, McCormick TA (1998) Electron localization in molecules and solids: the meaning of ELF. J Phys Chem A 102:6366–6372

    Article  CAS  Google Scholar 

  47. Nalewajski RF, Koster AM, Escalante S (2005) Electron localization function as information measure. J Phys Chem A 109:10038–10043

    Article  CAS  Google Scholar 

  48. Dobson JF (1991) Interpretation of the Fermi hole curvature. J Chem Phys 94:4328–4333

    Article  CAS  Google Scholar 

  49. Kohout M, Pernal K, Wagner FR, Grin Y (2004) Electron localizability indicator for correlated wavefunctions. I. Parallel spin pairs. Theor Chem Acc 112:453–459

    Article  CAS  Google Scholar 

  50. Wagner FR, Bezugly V, Kohout M, Grin Y (2007) Charge decomposition analysis of the electron localizability indicator: a bridge between the orbital and direct space representation of the chemical bond. Chem Eur J 13:5724–5741

    Article  CAS  Google Scholar 

  51. Silvi B (2003) The spin pair compositions as local indicators of the nature of the bonding. J Phys Chem A 107:3081–3085

    Article  CAS  Google Scholar 

  52. Matito E, Silvi B, Duran M, Solà M (2006) Electron localization function at the correlated level. J Chem Phys 125:024301

    Article  Google Scholar 

  53. Feixas F, Matito E, Duran M, Solá M, Silvi B (2010) Electron localization function at the correlated level: a natural orbital formulation. J Chem Theory Comput 6:2736–2742

    Article  CAS  Google Scholar 

  54. Silvi B, Savin A (1994) Classification of chemical bonds based on topological analysis of electron localization function. Nature 371:683–686

    Article  CAS  Google Scholar 

  55. Häussermann U, Wengert S, Nesper R (1994) Unequivocal partitioning of crystal structures. Exemplified by intermetallic phases containing aluminium. Angew Chem Int Ed Engl 33:2073–2076

    Article  Google Scholar 

  56. Gillespie RJ, Robinson EA (2007) Models of molecular geometry. J Comput Chem 28:87–97

    Article  CAS  Google Scholar 

  57. Savin A, Silvi B, Colonna F (1996) Topological analysis of the electron localization function applied to delocalized bonds. Can J Chem 74:1088–1096

    Article  CAS  Google Scholar 

  58. Kohout M, Wagner FR, Grin Y (2002) Electron localization function for transition-metal compounds. Theor Chem Acc 108:150–156

    Article  CAS  Google Scholar 

  59. Calatayud M, Andrés J, Beltrán A, Silvi B (2001) The hierarchy of localization basins: a tool for the understanding of chemical bonding exemplified by the analysis of the VO x and VO x+ (x=1-4) systems. Theoret Chem Acc 105:299–308

    Article  CAS  Google Scholar 

  60. Silvi B, Ratajczak H (2016) Hydrogen bonding and delocalization in the ELF analysis approach. Phys Chem ChemPhys 18:27442–27449

    Article  CAS  Google Scholar 

  61. Thom R (1972) Stabilité Structurelle et Morphogénèse Intereditions, Paris

  62. Saunders VR, Dovesi R, Roetti C, Causà M, Harrison NM, Orlando R, Zicovitch-Wilson CM (1998) CRYSTAL98. User’s manual Torino, Italy

    Google Scholar 

  63. Schäfer A, Huber C, Ahlrichs R (1994) Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J Chem Phys 100:5829–5835

    Article  Google Scholar 

  64. Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:13244–13249

    Article  CAS  Google Scholar 

  65. Gatti C (1998) Topond98 manual CNR-CSRSRC. Milano, Italy

    Google Scholar 

  66. Noury S, Krokidis X, Fuster F, Silvi B (1999) Computational tools for the electron localization function topological analysis. Comput Chem 23:597–604

    Article  CAS  Google Scholar 

  67. Acura CL (2002) Amira 3.0 TGS. Template Graphics Sofware, Inc., San Diego, USA

    Google Scholar 

  68. Gschneidner KA Jr (1964) Physical properties and interrelationships of metallic and semimetallic elements. In: Seitz F, Turnbull D (eds) Solid State Physics, vol 16. Academic Press, pp 275–426

  69. Hanfland M, Loa I, Syassen K, Schwarz U, Takemura K (1999) Equation of state of lithium to 21 GPa. Solid State Commun 112:123 – 127

    Article  CAS  Google Scholar 

  70. Ormeci A, Rosner H, Wagner F, Kohout M, Grin Y (2006) Electron localization function in full-potential representation for crystalline materials. J Phys Chem A 110:1100–1105

    Article  CAS  Google Scholar 

  71. Savin A, Becke AD, Flad J, Nesper R, Preuss H, Von Schnering HG (1991) A new look at electron localization. Angew Chem Int Ed Engl 30:409

    Article  Google Scholar 

  72. Savin A, Jepsen O, Flad J, Andersen OK, Preuss H, von Schnering HG (1992) Electron localization in the solid-state structures of the elements: The diamond structure. Angew Chem Int Ed Engl 31:187–190

    Article  Google Scholar 

  73. Savin A, Nesper R, Wengert S, Fässler TF (1997) ELF: The electron localization function. Angew Chem Int Ed Engl 36:1809–1832

    Article  Google Scholar 

  74. Alikhani ME, Shaik S (2006) A topological study of the ferromagnetic “no-pair bonding” in maximum-spin lithium clusters: Li-n+1(n)(n = 2-6). Theor Chem Acc 116:390–397

    Article  CAS  Google Scholar 

  75. Contreras-Garcá J, Martín Pendás A, Silvi B, Recio JM (2008) Useful applications of the electron localization function in high-pressure crystal chemistry. J Phys Chem Solids 69:2204– 2207

    Article  Google Scholar 

  76. Contreras-Garcia J, Mori-Sanchez P, Silvi B, Recio JM (2009) A quantum chemical interpretation of compressibility in solids. J Chem Theory Comput 5:2108–2114

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Silvi.

Ethics declarations

This theoretical work meets the requirements of the ethical standards.

Additional information

This paper is dedicated to Professor Lou Massa on the occasion of his Festschrift

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silvi, B. Pressure effect on electron localization in solid lithium. Struct Chem 28, 1389–1397 (2017). https://doi.org/10.1007/s11224-017-0962-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-017-0962-7

Keywords

Navigation