Skip to main content
Log in

Theoretical study on the kinetics and branching ratios of the gas phase reactions of 1, 1-Dichlorodimethylether (DCDME) with Cl atom

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Quantum mechanical calculations are carried out on the reactions of CH3OCHCl2 (DCDME) with Cl atom by means of DFT and couple cluster methods. The geometries of the reactants, products, and transition states involved in the reaction pathways are optimized at BHandHLYP level of theory using 6-311G(d,p) basis set. Transition states are searched on the potential energy surface involved during the reaction channels, and each of the transition states is characterized by the presence of only one imaginary frequency. The existence of transition states on the corresponding potential energy surface is ascertained by performing intrinsic reaction coordinate calculation. Single point energy calculations are performed at CCSD(T) level using the same basis set. The hydrogen abstraction rate constant for the title reaction is calculated at 298 K and atmospheric pressure using the canonical transition state theory including tunneling correction. The calculated value for rate constant as 1.204 × 10−12 cm3 molecule−1 s−1 is found to be in very good agreement with the recent experimental data. The percentage contributions of both reaction channels are also reported at 298 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Atkinson R, Arey J (2003) Chem Rev 103:4605–4638

    Article  CAS  Google Scholar 

  2. Placet M, Mann CO, Gilbert RO, Niefer MJ (2000) Atmos Environ 34:2183–2204

    Article  CAS  Google Scholar 

  3. Guenther A, Geron C, Pierce T, Lamb B, Harley P, Fall R (2000) Atmos Environ 34:2205–2230

    Article  CAS  Google Scholar 

  4. Guenther A, Hewitt CN, Erickson D, Fall R, Geron C, Graedel T, Harley P, Klinger L, Lerdau M, McKay WA, Pierce T, Scholes B, Steinbrecher R, Tallamraju R, Taylor J, Zimmermann P (1995) J Geophys Res 100:8873–8892

    Article  CAS  Google Scholar 

  5. Sawyer RF, Harley RA, Cadle SH, Norbeck JM, Slott R, Bravo HA (2000) J Atmos Environ 34:12–14

    Article  Google Scholar 

  6. Wallington TJ, Gushin A, Stein TNN, Platz J, Sehested J, Christensen LK, Nielsen OJ (1998) J Phys Chem A 102:1152–1161

    Article  CAS  Google Scholar 

  7. Tsai WT (2005) J Hazard Mater 119:69–78

    Article  CAS  Google Scholar 

  8. Sekiya A, Misaki S (2000) J Fluorine Chem 101:215–221

    Article  CAS  Google Scholar 

  9. Singh HJ, Mishra BK (2010) J Mol Model 16:1473–1480

    Article  CAS  Google Scholar 

  10. Singh HJ, Mishra BK (2011) J Mol Model 17:415–422

    Article  CAS  Google Scholar 

  11. Blowers P, Tetrault KF, Morehead YT (2008) Theor Chem Acc 119:369–381

    Article  CAS  Google Scholar 

  12. Ravishankara RA, Turnipseed AA, Jensen NR, Barone S, Mills M, Howark CJ, Solomon S (1994) Science 263:71–75

    Article  CAS  Google Scholar 

  13. Granier C, Shine KP, Daniel JS, Hansen JE, Lal S, Stordal F (1999) Climate effects of ozone and halocarbon changes in scientific Assessment of Ozone Depletion: 1998, Rep. 44, Global Ozone Research and Monitoring Project, World Meteorological Organization, Geneva, Switzerland

  14. Chandra AK (2012) J Mol Model 18:4239–4247

    Article  CAS  Google Scholar 

  15. Zierkiewicz W, Michalska D, Zeegers-Huyskens T (2010) Phys Chem Chem Phys 12:13681–13691

    Article  CAS  Google Scholar 

  16. Nishida S, Morita Y, Ueda A, Kobayashi T, Fukui K, Ogasawara K, Sato K, Takui T, Nakasuji K (2008) J Am Chem Soc 130:14954–14955

    Article  CAS  Google Scholar 

  17. Dalmasso PR, Taccone Raúl A, Nieto JD, Cometto PM, Lane SI (2010) Atmos Environ 44:1749–1753

    Article  CAS  Google Scholar 

  18. Spicer CW, Chapman EG, Finlayson-Pitts BJ, Plastidge RA, Hubbe JM, Fast JD, Berkowitz CM (1998) Nature 394:353–356

    Article  CAS  Google Scholar 

  19. Mellouki A, Le Bras G, Sidebottom H (2003) Chem Rev 103:5077–5096

    Article  CAS  Google Scholar 

  20. Ezell MJ, Wang W, Ezell AA, Soskin G, Finlayson-Pitts BJ (2002) Phys Chem Chem Phys 4:5813–5820

    Article  CAS  Google Scholar 

  21. Finlayson-Pitts BJ, Pitts JN Jr (2000) Chemistry of the upper and lower atmosphere. Academic, New York

    Google Scholar 

  22. Dalmasso PR, Taccone RA, Nietoa JD, PM Comettoa, Lane SI (2008) J Phys Org Chem 21:393–396

    Article  CAS  Google Scholar 

  23. Dalmasso PR, Taccone RA, Nietoa JD, Comettoa PM, Teruel MA, Lane SI (2005) Int J Chem Kinet 37:420–426

    Article  CAS  Google Scholar 

  24. Truhlar DG, Garrett BC, Klippenstein SJ (1996) J Phys Chem 100:12771–12800

    Article  CAS  Google Scholar 

  25. Laidler KJ (2004) Chemical kinetics, 3rd edn. Pearson Education, Delhi

    Google Scholar 

  26. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X,Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr , Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell K, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, revision B.01. Gaussian Inc., Wallingford

  27. Becke AD (1993) J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  28. Pople JA, Head-Gordon M, Raghavachari K (1987) J Chem Phys 87:5968–5975

    Article  CAS  Google Scholar 

  29. Alvarez-Idaboy JR, Cruz-Torres A, Galano A, Ruiz-Santoyo ME (2004) J Phys Chem 108:2740–2749

    Article  CAS  Google Scholar 

  30. Zhurko G, Zhurko D (2011) ChemCraft 1.6

  31. Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154–2161

    Article  CAS  Google Scholar 

  32. Kuchitsu K structure of free polyatomic molecules basic data (1998) Springer, Berlin 1, 58

  33. Hammond GS (1955) J Am Chem Soc 77:334–338

    Article  CAS  Google Scholar 

  34. Truhlar DG, Chuang YY (2000) J Chem Phys 112:1221–1228

    Article  Google Scholar 

  35. Wigner EP (1932) Z Phys Chem B19:203–216

    CAS  Google Scholar 

  36. Chase MW Jr, Davies CA, Downey JR Jr, Frurip DJ, McDonald RA, Syverud AN (1985) JANAF thermochemical tables, J Phys Chem Ref Data 14, Suppl 1, 3rd edn

  37. In NIST Chemistry Web Book, NIST Standard Reference Data-base Number 69 (2005) (Vibrational frequency data compiled by T. Shimanouchi). http://www.ccbdb.nist.gov/. Accessed 18 Jan 2013

Download references

Acknowledgments

One of the authors, BKM, is thankful to University Grants Commission, New Delhi for providing Dr. D. S. Kothari Post doctoral Fellowship. The financial support in the form of Junior Research Fellowship to DB from CSIR, New Delhi is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Chandra Deka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishra, B.K., Chakrabartty, A.K., Bhattacharjee, D. et al. Theoretical study on the kinetics and branching ratios of the gas phase reactions of 1, 1-Dichlorodimethylether (DCDME) with Cl atom. Struct Chem 24, 1621–1626 (2013). https://doi.org/10.1007/s11224-013-0203-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-013-0203-7

Keywords

Navigation