Skip to main content
Log in

Halogen bonding: a theoretical study based on atomic multipoles derived from quantum theory of atoms in molecules

Structural Chemistry Aims and scope Submit manuscript

Abstract

Atomic multipole moments derived from quantum theory of atoms in molecules are used to study halogen bonds in dihalogens (with general formula YX, in which X refers to the halogen directly interacted with the Lewis base) and some molecules containing C–X group. Multipole expansion is used to calculate the electrostatic potential in a vicinity of halogen atom (which is involved in halogen bonding) in terms of atomic monopole, dipole, and quadrupole moments. In all the cases, the zz component of atomic traceless quadrupole moments (where z axis taken along Y–X or C–X bonds) of the halogens plays a stabilizing role in halogen bond formation. The effects of atomic monopole and dipole moments on the formation of a halogen bond in YX molecules depend on Y and X atoms. In Br2 and Cl2, the monopole moment of halogens is zero and has no contribution in electrostatic potential and hence in halogen bonding, while in ClBr, FBr, and FCl it is positive and therefore stabilize the halogen bonds. On the other hand, the negative sign of dipole moment of X in all the YX molecules weakens the corresponding halogen bonds. In the C–X-containing molecules, monopole and dipole moments of X atom are negative and consequently destabilize the halogen bonds. So, in these molecules the quadrupole moment of X atom is the only electrostatic term which strengthens the halogen bonds. In addition, we found good linear correlations between halogen bonds strength and electrostatic potentials calculated from multipole expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  1. Metrangolo P, Resnati G (eds) (2008) Halogen bonding, fundamentals and applications. Springer, Berlin

    Google Scholar 

  2. Guthrie F (1863) J Chem Soc 16:239–244

    Article  Google Scholar 

  3. Bent HA (1968) Chem Rev 68:587–648

    Article  CAS  Google Scholar 

  4. Desiraju GR (1995) Angew Chem Int Ed Engl 34:2311

    Article  CAS  Google Scholar 

  5. Flurry RL Jr (1969) J Phys Chem 69:1927–1933

    Article  Google Scholar 

  6. Hassel O (1970) Science 170:497–502

    Article  CAS  Google Scholar 

  7. Mulliken RS (1952) J Am Chem Soc 74:811–824

    Article  CAS  Google Scholar 

  8. Crihfield A, Hartwell J, Phelps D, Walsh RB, Harris JL, Payne JF, Penington WT, Hanks TW (2003) Cryst Growth Des 3:313

    Article  CAS  Google Scholar 

  9. Metrangolo P, Neukirch H, Pilati TGR (2005) Acc Chem Res 38:386–395

    Article  CAS  Google Scholar 

  10. Moorthy JN, Venkatakrishnan P, Mal P, Dixit S, Venugopalan P (2003) Cryst Growth Des 3:581

    Article  CAS  Google Scholar 

  11. Nguyen HL, Horton PN, Hursthouse MB, Legon AC, Bruce DW (2004) J Am Chem Soc 126:16

    Article  CAS  Google Scholar 

  12. Chu QL, Wang ZM, Huang QC, Yan CH, Zhu SZ (2001) J Am Chem Soc 123:11069

    Article  CAS  Google Scholar 

  13. Corradi E, Meille SV, Messina MT, Metrangolo P, Resnati G (2000) Angew Chem Int Ed Engl 39(10):1782–1786

    Article  CAS  Google Scholar 

  14. Lehn JM (1988) Angew Chem Int Ed Engl 27:89–112

    Article  Google Scholar 

  15. Politzer P, Murray JS, Concha MC (2007) J Mol Model 13:643–650

    Article  CAS  Google Scholar 

  16. Auffinger P, Hays FA, Westhof ESHP (2004) Proc Natl Acad Sci USA 101:16789

    Article  CAS  Google Scholar 

  17. Himmel DM, Das K, Clark AD, Hughes SH, Benjahad A, Oumouch S, Guillemont J, Coupa S, Poncelet A, Csoka I, Meyer C, Andries K, Nguyen HL, Grierson DS, Arnold E (2005) J Med Chem 48:7582

    Article  CAS  Google Scholar 

  18. Jiang Y, Alcaraz AA, Kobayashi H, Lu YJ, Snyder JP (2006) J Med Chem 49:1891

    Article  CAS  Google Scholar 

  19. Ghosh M, Meerts IATM, Cook A, Bergman A, Brouwer A, Johnson LN (2000) Acta Crystallogr D 56:1085

    Article  CAS  Google Scholar 

  20. Bui TTT, Dahaoui S, Lecomte C, Desiraju GR (2009) Angew Chem Int Ed 48:3838–3841

    Article  CAS  Google Scholar 

  21. Clark T, Hennemann M, Murray JS, Politzer P (2007) J Mol Model 13:291–296

    Article  CAS  Google Scholar 

  22. Eskandari K, Zariny H (2010) Chem Phys Lett 492:9–13

    Article  CAS  Google Scholar 

  23. Murray JS, Lane P, Politzer P (2009) J Mol Model 15:723–729

    Article  CAS  Google Scholar 

  24. Politzer P, Lane P, Concha MC, Ma YG, Murray JS (2007) J Mol Model 13:305

    Article  CAS  Google Scholar 

  25. Torii H (2003) J Chem Phys 119:2192–2198

    Article  CAS  Google Scholar 

  26. Lommerse JPM, Stone AJ, Taylor R, Allen FH (1996) J Am Chem Soc 118:3108–3116

    Article  CAS  Google Scholar 

  27. Murray JS, Lane P, Politzer P (2007) Int J Quant Chem 107:2286–2292

    Article  CAS  Google Scholar 

  28. Torii H, Yoshida M (2010) J Comput Chem 31:107–116

    Article  CAS  Google Scholar 

  29. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VGSD, Daniels A, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03 revision B03. Gaussian, Inc., Wallingford

    Google Scholar 

  30. Bader RWF (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  31. Popelier P (2000) Atoms in molecules: an introduction. Prentice Hall, Harlow

    Google Scholar 

  32. Keith TA (2011) AIMAll (standard mode), Version 11.02.27. AIMAll, Overland Park

    Google Scholar 

  33. Grana MA, Mosquera RA (1999) J Chem Phys 110:6606–6617

    Article  CAS  Google Scholar 

  34. Vila A, Mosquera RA (2001) J Chem Phys 115:1254–1264

    Article  Google Scholar 

  35. Legon AC (1998) Chem Eur J 4:1890

    Article  CAS  Google Scholar 

  36. Legon AC (1999) Angew Chem Int Ed 38:2686

    Article  Google Scholar 

  37. Legon AC (2008) In: Metrangolo P, resnati G (eds) Halogen bonding, fundamentals and applications. Springer, Berlin, pp 17–64

    Chapter  Google Scholar 

  38. Karpfen A (2000) J Phys Chem A 104:6871

    Article  CAS  Google Scholar 

  39. Karpfen A (2001) J Phys Chem A 105:2064

    Article  CAS  Google Scholar 

  40. Karpfen A (2008) In: Metrangolo P, Resnati G (eds) Halogen bonding, fundamentals and applications. Springer, Berlin, pp 1–15

    Chapter  Google Scholar 

  41. Koster AM, Leboeuf M, Salahub DR (1996) In: Murray JS, Sen K (eds) Molecular electrostatic potentials; concepts and applications, vol 3. Elsevier Science B.V., Amsterdam

    Google Scholar 

  42. Coppens P (1997) X-ray charge densities and chemical bonding. Oxford University Press, New York

    Google Scholar 

  43. Rodrigues EFF, deSA EL, Haiduke RLA (2008) Int J Quantum Chem 108:2417–2427

    Article  CAS  Google Scholar 

  44. Zou J-W, Jiang Y-J, Guo M, Hu G-X, Zhang B, Liu H-C, Yu Q-S (2005) Chem Eur J 11:740–751

    Article  CAS  Google Scholar 

  45. Mulliken RS, Person WB (1969) Molecular complexes. Wiley, New York

    Google Scholar 

  46. Bader RFW, Carroll MT, Cheeseman JR, Chang C (1987) J Am Chem Soc 109:7968–7979

    Article  CAS  Google Scholar 

  47. Riley KE, Murray JS, Politzer P, Concha MC, Hobza P (2009) J Chem Theory Comput 5:155–163

    Article  CAS  Google Scholar 

  48. Riley KE, Murray JS, Fanfrlik J, Rezac J, Sola RJ, Concha MC, Ramos FM, Politzer P (2011) J Mol Model 17:3309–3318

    Article  CAS  Google Scholar 

  49. Bundhun A, Ramasami P, Murray JS, Politzer P (2012) J Mol Model. doi:10.1007/s00894-00012-01571-00894

Download references

Acknowledgments

This work was supported by Mahshahr Branch of Islamic Azad University and it was a part of the research project entitled: The Nature of Halogen Bonds—A Theoretical Study Based on the Distribution of the Laplacian of the electron density.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. J. Jahromi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jahromi, H.J., Eskandari, K. Halogen bonding: a theoretical study based on atomic multipoles derived from quantum theory of atoms in molecules. Struct Chem 24, 1281–1287 (2013). https://doi.org/10.1007/s11224-012-0156-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-012-0156-2

Keywords

Navigation