Skip to main content
Log in

The effect of methylation on the hydrogen-bonding and stacking interaction of nucleic acid bases

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Methylated nucleosides play an important role in DNA/RNA function, and may affect republication by interrupting the base-pairing and base-stacking. In order to investigate the effect of methylation on the interaction between nucleic acid bases, this work presents the hydrogen-bonding and stacking interactions between 5-methylcytosine and guanine (G), cytosine (C) and G, 1-methyladenine and thymine (T), as well as adenine and T. Geometry optimization and potential energy surface scan have been performed for the involved complexes by MP2 calculations. The interaction energies, which were corrected for the basis-set superposition error by the full Boys–Bernardi counterpoise correction scheme, were used to evaluate the interaction intensity of these nucleic acid bases. The atoms in molecules theory and natural bond orbital analysis have been performed to study the hydrogen bonds in these complexes. The result shows that the methyl substitute contributes the stability to these complexes because it enhances either the hydrogen bonding or the staking interaction between nucleic acid bases studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Colot V, Rossignol JL (1999) Eukaryotic DNA methylation as an evolutionary device. BioEssays 21:402–411

    Article  CAS  Google Scholar 

  2. Squires JE, Preiss T (2010) Function and detection of 5-methylcytosine in eukaryotic RNA. Epigenomics 2:709–715

    Article  CAS  Google Scholar 

  3. Hill G, Paukku Y (2011) Theoretical determination of one-electron redox potentials for DNA bases, base pairs, and stacks. J Phys Chem A 115:4804–4810

    Article  Google Scholar 

  4. Falnes PO, Ougland R, Zhang CM, Liiv A, Johansen RF, Seeberg E, Hou YM, Remme J (2004) AlkB restores the biological function of mRNA and tRNA inactivated by chemical methylation. Mol Cell 16:107–116

    Article  Google Scholar 

  5. Luisi B, Orozco M, Šponer J, Luque FJ, Shakked Z (1998) On the potential role of the amino nitrogen atom as a hydrogen bond acceptor in macromolecules. J Mol Biol 279:1123–1129

    Article  CAS  Google Scholar 

  6. Krüger T, Bruhn C, Steinborn D (2004) Synthesis of [(MeCyt)2H]I—structure and stability of a dimeric threefold hydrogen-bonded 1-methylcytosinium 1-methylcytosine cation. Org Biomol Chem 2:2513–2516

    Article  Google Scholar 

  7. Ramakrishnan B, Sundaralingam M (1995) Crystal structure of the A-DNA decamer d(CCIGGCCm5CGG) at 1.6 angstroms showing the unexpected wobble I.m5C base pair. Biophys J 69:553–559

    Article  CAS  Google Scholar 

  8. Gao W-l, Li D, Xiao Z-x, Liao Q-p, Yang H-x, Li Y-x, Ji L, Wang Y-l (2011) Detection of global DNA methylation and paternally imprinted H19 gene methylation in preeclamptic placentas. Hypertens Res 34:655–661

    Article  CAS  Google Scholar 

  9. Zhu X, Liang J, Li F, Yang Y, Xiang L, Xu J (2011) Analysis of associations between the patterns of global DNA hypomethylation and expression of DNA methyltransferase in patients with systemic lupus erythematosus. Int J Dermatol 50:697–704

    Article  CAS  Google Scholar 

  10. Katiyar SK, Nandakumar V, Vaid M (2011) (–)-Epigallocatechin-3-gallate reactivates silenced tumor suppressor genes, Cip1/p21 and p16(INK4a), by reducing DNA methylation and increasing histones acetylation in human skin cancer cells. Carcinogenesis 32:537–544

    Article  Google Scholar 

  11. Watson JD, Crick FHC (1953) A structure for deoxyribose nucleic acid. Nature 171:731–738

    Article  Google Scholar 

  12. Parthasarathi R, Subramanian V (2006) Hydrogen bonding of DNA base pairs and information entropy: from molecular electron density perspective. Chem Phys Lett 418:530–534

    Article  CAS  Google Scholar 

  13. Dkhissi A, Blossey R (2007) Performance of DFT/MPWB1K for stacking and H-bonding interactions. Chem Phys Lett 439:35–39

    Article  CAS  Google Scholar 

  14. Thiviyanathan V, Somasunderam A, Volk DE, Hazra TK, Mitra S, Gorenstein DG (2008) Base-pairing properties of the oxidized cytosine derivative, 5-hydroxy uracil. Biochem Biophys Res Commun 366:752–757

    Article  CAS  Google Scholar 

  15. Padermshoke A, Katsumoto Y, Masaki R, Aida M (2008) Thermally induced double proton transfer in GG and wobble GT base pairs: a possible origin of the mutagenic guanine. Chem Phys Lett 457:232–236

    Article  CAS  Google Scholar 

  16. Yewski P (2010) Structural and energetic consequences of oxidation of d(ApGpGpGpTpT) telomere repeat unit in complex with TRF1 protein. J Mol Struct (Theochem) 16:1797–1807

    Google Scholar 

  17. Villani G (2006) Theoretical investigation of hydrogen transfer mechanism in the guanine–cytosine base pair. Chem Phys 324:438–446

    Article  CAS  Google Scholar 

  18. Meng FC, Xu WR, Liu CB (2004) Theoretical study of various H-bond nonclassical A:T and G:C pairs. J Mol Struct (Theochem) 677:85–90

    Article  CAS  Google Scholar 

  19. Atacharyya D, Koripella SC, Mitra A, Rajendran VB, Sinha B (2007) Theoretical analysis of noncanonical base pairing interactions in RNA molecules. J Biosci 32:809–813

    Article  Google Scholar 

  20. Ailov VI, Anisimov VM, Kurita N, Hovorun D (2005) MP2 and DFT studies of the DNA rare base pairs: the molecular mechanism of the spontaneous substitution mutations conditioned by tautomerism of bases. Chem Phy Lett 412:285–293

    Article  Google Scholar 

  21. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian03, revision. Gaussian, Inc. Wallingford CT

  22. Hobza P, Šponer J (2002) Toward true DNA base-stacking energies: MP2, CCSD(T), and complete basis set calculations. J Am Chem Soc 124:11802–11808

    Article  CAS  Google Scholar 

  23. Hobza P, Zahradnik R (1988) Intermolecular complexes. Elsevier, Amsterdam

    Google Scholar 

  24. van Duijneveldt FB, van Duijneveldt-van de Rijdt JGCM, van Lenthe JH (1994) State of the art in counterpoise theory. Chem Rev 94:1873–1885

    Article  Google Scholar 

  25. Carpenter JE, Weinhold F (1988) Analysis of the geometry of the hydroxymethyl radical by the “different hybrids for different spins” natural bond orbital procedure. J Mol Struct (Theochem) 169:41–62

    Article  Google Scholar 

  26. Foster JP, Weinhold F (1980) Natural hybrid orbitals. J Am Chem Soc 102:7211–7218

    Article  CAS  Google Scholar 

  27. Alkorta I, Elguero J, Foces–Foces C (1996) Dihydrogen bonds (A–H···H–B). Chem Commun 14:1633–1637

    Article  Google Scholar 

  28. Alkorta I, Rozas I, Elguero J (1998) Bond length–electron density relationships: from covalent bonds to hydrogen bond interactions. Struct Chem 9:243–247

    Article  CAS  Google Scholar 

  29. Bader RFW (1991) A quantum theory of molecular structure and its applications. Chem Rev 91:893–901

    Article  CAS  Google Scholar 

  30. Bader RFW (1998) Bifurcated hydrogen bonds: three-centered interactions. J Phys Chem A 102:9925–9932

    Article  Google Scholar 

  31. Jurecka P, Hobza P (2003) True stabilization energies for the optimal planar hydrogen-bonded and stacked structures of guanine···cytosine, adenine···thymine, and their 9- and 1-methyl derivatives: complete basis set calculations at the MP2 and CCSD(T) levels and comparison with experiment. J Am Chem Soc 125:15608–15613

    Article  CAS  Google Scholar 

  32. Desiraju GR (1991) The C–H.cntdot.cntdot.cntdot.O hydrogen bond in crystals: what is it? Acc Chem Res 24:290–296

    Article  CAS  Google Scholar 

  33. Starikov EB, Steiner T (1997) Computational support for the suggested contribution of C–HO=C interactions to the stability of nucleic acid base pairs. Acta Cryst 53:345–347

    CAS  Google Scholar 

  34. Och U, Popelier PLA (1995) Characterization of C–H–O hydrogen bonds on the basis of the charge density. J Phys Chem 99:9747–9754

    Article  Google Scholar 

Download references

Acknowledgments

Financial supports from the National Natural Science Foundation of China (20875038), the Research Program of State Key Laboratory of Food Science and Technology (SKLF-ZZB-201207), and the Program of Innovation Team of Jiangnan University (2008CXTD01) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongmei Xia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, Q., Qiu, Z., Wang, H. et al. The effect of methylation on the hydrogen-bonding and stacking interaction of nucleic acid bases. Struct Chem 24, 55–65 (2013). https://doi.org/10.1007/s11224-012-0027-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-012-0027-x

Keywords

Navigation