Skip to main content
Log in

A theoretical study of 1:1 and 1:2 complexes of acetylene with nitrosyl hydride

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Ab initio calculations at MP2 computational level using aug-cc-pVTZ basis set were used to analyze the interactions between 1:1 and 1:2 complexes of acetylene and nitrosyl hydride. The structures obtained have been analyzed with the atoms in molecules and the density functional theory–symmetry adapted perturbation theory methodologies. Four minima were located on the potential energy surface of the 1:1 complex. Twenty-four different structures have been obtained for the 1:2 complexes. Five types of interactions are observed, CH···O, CH···N, NH···π hydrogen bonds and orthogonal interactions between the π clouds of triple bond, or the lone pair of oxygen with the electron-deficient region of the nitrogen atom. Stabilization energies of the 1:1 and 1:2 clusters including basis set superposition error and ZPE are in the range 3–8 and 6–17 kJ mol−1 at MP2/aug-cc-pVTZ computational level, respectively. Blue shift of NH bond upon complex formation in the ranges between 18–30 and 20–96 cm−1 is predicted for 1:1 and 1:2 clusters, respectively. The total nonadditive energy in the 1:2 cluster, calculated as the sum of the supermolecular nonadditive MP2 energy and the three-body dispersion energy, presents values between −1.48 and 1.20 kJ mol−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, New York

    Google Scholar 

  2. Scheiner S (1997) Hydrogen bonding. Oxford University Press, New York

    Google Scholar 

  3. Desiraju GR, Steiner T (1999) The weak hydrogen bond. Oxford University Press, Oxford

    Google Scholar 

  4. Schuster P, Zundel G, Sandorfy C (1976) The hydrogen bond: recent developments in theory and experiments. North-Holland Publishing Co, Amsterdam

    Google Scholar 

  5. Pinchas S (1963) J Phys Chem 67:1862

    Article  CAS  Google Scholar 

  6. Schneider WG, Bernstein HJ (1956) Trans Faraday Soc 52:13

    Article  CAS  Google Scholar 

  7. Trudeau G, Dumas J-M, Dupuis P, Guerin M, Sandorfy C (1980) Top Curr Chem 93:91

    Article  CAS  Google Scholar 

  8. Budesinsky M, Fiedler P, Arnold Z (1989) Synthesis 858

  9. Scheiner S (2000) In: Hargittai M, Hargittai I (eds) Advances in molecular structure research, vol 6. JAI Press, Stamford

  10. Hobza P, Havlas Z (2002) Theor Chem Acc 108:325

    Article  CAS  Google Scholar 

  11. Scheiner S (2005) In: Dykstra CE, Frenking G, Kim KS, Scuseria GE (eds) Theory and applications of computational chemistry: the first 40 years. Elsevier, Amsterdam

  12. Gu Y, Kar T, Scheiner S (1999) J Am Chem Soc 121:9411

    Article  CAS  Google Scholar 

  13. Masunov A, Dannenberg JJ, Contreras RH (2001) J Phys Chem A 105:4737

    Article  CAS  Google Scholar 

  14. Hermansson K (2002) J Phys Chem A 106:4695

    Article  CAS  Google Scholar 

  15. Pejov L, Hermansson K (2003) J Chem Phys 119:313

    Article  CAS  Google Scholar 

  16. Qian W, Krimm S (2002) J Phys Chem A 106:6628

    Article  CAS  Google Scholar 

  17. Qian W, Krimm S (2002) J Phys Chem A 106:11663

    Article  CAS  Google Scholar 

  18. Delanoye SN, Herrebout WA, van der Veken BJ (2002) J Am Chem Soc 124:7490

    Article  CAS  Google Scholar 

  19. Delanoye SN, Herrebout WA, van der Veken BJ (2002) J Am Chem Soc 124:11854

    Article  CAS  Google Scholar 

  20. Li X, Liu L, Schlegel HB (2002) J Am Chem Soc 124:9639

    Article  CAS  Google Scholar 

  21. Alabugin IV, Manoharan M, Peabody S, Weinhold F (2003) J Am Chem Soc 125:5973

    Article  CAS  Google Scholar 

  22. Alabugin IV, Manoharan M, Weinhold FA (2004) J Phys Chem A 108:4720

    Article  CAS  Google Scholar 

  23. Karpfen A, Kryachko ES (2009) J Phys Chem A 113:5217

    Article  CAS  Google Scholar 

  24. Bunte SW, Rice BM, Chabalowski CF (1997) J Phys Chem A 101:9430

    Article  CAS  Google Scholar 

  25. Liu Y, Liu W, Yang Y, Liu J (2006) Int J Quantum Chem 106:2122

    Article  CAS  Google Scholar 

  26. Liu Y, Liu W, Li H, Liu J, Yang Y (2006) J Phys Chem A 110:11760

    Article  CAS  Google Scholar 

  27. Solimannejad M, Massahi S, Alkorta I (2009) Chem Phys 362:1

    Article  CAS  Google Scholar 

  28. Yang Y, Zhang W, Gao X (2005) Int J Quantum Chem 106:1199

    Article  Google Scholar 

  29. Liu Y, Liu W, Li H, Liu J, Yang Y, Cheng S (2006) Int J Quantum Chem 107:396

    Article  Google Scholar 

  30. Liu Y, Liu W-Q, Li HY, Yang Y, Cheng S (2007) Chin J Chem Phys 20:37

    Article  Google Scholar 

  31. Liu Y (2008) Int J Quantum Chem 108:1123

    Article  CAS  Google Scholar 

  32. Nguyen TT, Hue TT, Nguyen MT, Zeegers-Huyskens T (2008) Phys Chem Chem Phys 10:5105

    Google Scholar 

  33. Yang Y, Zhang W-J, Gao X-M (2006) Chin J Chem 24:887

    Article  CAS  Google Scholar 

  34. Trung NT, Hue TT, Nguyen MT (2009) J Phys Chem A 113:3245

    Article  CAS  Google Scholar 

  35. Solimannejad M, Scheiner S (2007) J Phys Chem A 111:4431

    Article  CAS  Google Scholar 

  36. Solimannejad M, Scheiner S (2008) J Phys Chem A 112:4120

    Article  CAS  Google Scholar 

  37. Solimannejad M, Alkorta I, Elguero J (2009) Chem Phys Lett 474:253

    Article  CAS  Google Scholar 

  38. Solimannejad M, Hasanvand Jamshidi F, Amani S (2010) THEOCHEM 958:116

    Article  CAS  Google Scholar 

  39. Solimannejad M, Nassirinia N, Amani S (2011) Struct Chem 22:865

    Article  CAS  Google Scholar 

  40. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven JT, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzales C, Pople JA (2003) Gaussian 03 Rev B02. Gaussian Inc, Pittsburgh

    Google Scholar 

  41. Dunning TH (1989) J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  42. Boys SF, Bernardi F (1970) Mol Phys 19:553

    Article  CAS  Google Scholar 

  43. Alkorta I, Trujillo C, Elguero J, Solimannejad M (2011) Comput Theor Chem 967:147

    Article  CAS  Google Scholar 

  44. Bader RFW (1990) Atoms in molecules: a quantum theory. Clarendon Press, Oxford

    Google Scholar 

  45. Keith TA (2008) AIMAll Version 08.11.29; aim.tkgristmill.com

  46. Rozas I, Alkorta I, Elguero J (2000) J Am Chem Soc 122:11154

    Article  CAS  Google Scholar 

  47. Ziolkowski M, Grabowski SJ, Leszczynski J (2006) J Phys Chem A 110:6514

    Article  CAS  Google Scholar 

  48. Jeziorski B, Moszynski R, Szalewicz K (1994) Chem Rev 94:1887

    Article  CAS  Google Scholar 

  49. Misquitta AJ, Podeszwa R, Jeziorski B, Szalewicz K (2005) J Chem Phys 123:214103

    Article  Google Scholar 

  50. Jansen G, Heßelmann A (2001) J Phys Chem A 105:646

    Article  Google Scholar 

  51. Heßelmann A, Jansen G (2002) Chem Phys Lett 357:464

    Article  Google Scholar 

  52. Heßelmann A, Jansen G (2002) Chem Phys Lett 362:319

    Article  Google Scholar 

  53. Heßelmann A, Jansen G (2003) Chem Phys Lett 367:778

    Article  Google Scholar 

  54. Heßelmann A, Jansen G (2003) Phys Chem Chem Phys 5:5010

    Article  Google Scholar 

  55. Moszynski R, Heijmen TGA, Jeziorski B (1996) Mol Phys 88:741

    CAS  Google Scholar 

  56. Werner H-J, Knowles PJ, Knizia G, Manby FR, Schütz M, Celani P, Korona T, Lindh R, Mitrushenkov A, Rauhut G, Shamasundar KR, Adler TB, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Goll E, Hampel C, Hesselmann A, Hetzer G, Hrenar T, Jansen G, Köppl C, Liu Y, Lloyd AW, Mata RA, May AJ, McNicholas SJ, Meyer W, Mura ME, Nicklaß A, O'Neill DP, Palmieri P, Pflüger K, Pitzer R, Reiher M, Shiozaki T, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T, Wang M, Wolf A (2010) MOLPRO, a package of ab initio programs. http://www.molpro.net

  57. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  58. Lotrich VF, Szalewicz K (1997) J Chem Phys 106:9668

    Article  CAS  Google Scholar 

  59. Lotrich VF, Szalewicz K (2000) J Chem Phys 112:112

    Article  CAS  Google Scholar 

  60. Podeszwa R, Szalewicz K (2007) J Chem Phys 126:194101

    Article  Google Scholar 

  61. Hankins D, Moskowitz JW, Stillinger FH (1970) J Chem Phys 53:4544

    Article  CAS  Google Scholar 

  62. Christie RA, Jordan KD (2005) Struct Bond 116:27

    Article  CAS  Google Scholar 

  63. Harmony MD et al (1979) J Phys Chem Ref Data 8:619

    Article  CAS  Google Scholar 

  64. Dalby FW (1958) Can J Phys 36:1336

    Article  CAS  Google Scholar 

  65. NIST Standard Reference Database. http://webbook.nist.gov/chemistry

  66. Paulini R, Muller K, Diederich F (2005) Angew Chem Int Ed 44:1788

    Article  CAS  Google Scholar 

  67. Yap GPA, Jove FA, Claramunt RM, Sanz D, Alkorta I, Elguero J (2005) Aus J Chem 58:817

    Article  CAS  Google Scholar 

  68. Martín Pendás A, Blanco MA, Costales A, Mori Sánchez P, Luaña V (1999) Phys Rev Lett 83:1930

    Article  Google Scholar 

  69. Mata I, Alkorta I, Molins E, Espinosa E (2010) Chem Eur J 16:2442

    Article  CAS  Google Scholar 

  70. Solimannejad M, Massahi S, Alkorta I (2011) Int J Quantum Chem 111:3057

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Solimannejad or Ibon Alkorta.

Electronic supplementary material

11224_2011_9931_MOESM1_ESM.doc

Optimized geometries of the all complexes at the MP2/aug-cc-pVTZ computational level and AIM properties of intermolecular BCPs (a.u.) for the trimers (DOC 108 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solimannejad, M., Gharabaghi, M., Alkorta, I. et al. A theoretical study of 1:1 and 1:2 complexes of acetylene with nitrosyl hydride. Struct Chem 23, 847–856 (2012). https://doi.org/10.1007/s11224-011-9931-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-011-9931-8

Keywords

Navigation