Skip to main content
Log in

Optimization of the Mechanical Strength of PP/TALC Micro-Composite after Immersion in Benzene

  • Published:
Strength of Materials Aims and scope

In this study, the degradation of mechanical properties of polypropylene(PP)/talc composite after immersion in benzene was evaluated experimentally. Tensile tests were performed before and after immersion in benzene on specimens of this micro-composite, with different talc weight contents (0, 10, 40, and 50%). Microscopic observations were also performed on immersed and non-immersed specimens to explain the results of the tensile tests. These results show that the presence of talc particles improved the rigidity of the composite by increasing its Young modulus and decreasing its ultimate strain. However, the immersion in benzene caused significant degradation of the Young modulus, even though the talc content was increased. The study was completed by determining the optimal values of talc conten using the design experiment method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

Similar content being viewed by others

References

  1. A. A. El-Midany and S. S. Ibrahim, “The effect of mineral surface nature on the mechanical properties of mineral-filled polypropylene composites”, Polym. Bull., 64, 387–399 (2010).

    Article  CAS  Google Scholar 

  2. J. Chen, Y. Yan, T. Sun, et al., “Probing the roles of polymeric separators in lithium-ion battery capacity fade at elevated temperatures”, J. Electrochem. Soc., 161, No. 9, 1241–1246 (2014).

    Article  Google Scholar 

  3. S. Yan, X. Xiao, X. Huang, et al., “Unveiling the environment-dependent mechanical properties of porous polypropylene separators”, Polymer, 55, No. 24, 6282–6292 (2014).

    Article  CAS  Google Scholar 

  4. F. Iñiguez-Franco, R. Auras, G. Burgess, et al., “Concurrent solvent induced crystallization and hydrolytic degradation of PLA by water-ethanol solutions”, Polymer, 99, 315–323 (2016).

    Article  Google Scholar 

  5. S. A. Jabarin and W. J. Kollen, “Polyolefin properties for rigid food packaging”, Polym. Eng. Sci., 28, 1156–1161 (1988).

    Article  CAS  Google Scholar 

  6. B. Abbes, O. Zaki, and L. Safa, “Experimental and numerical study of the aging effects of sorption conditions on the mechanical behaviour of polypropylene bottles under columnar crush conditions”, Polym. Test., 29, 902–909 (2010).

    Article  CAS  Google Scholar 

  7. X. Niu, E. Martynenko, A. Chudnovsky, et al., “The effect of chemical degradation on physical properties and fracture behavior of poly (ethylene-co-carbon) and poly(1-butene)”, in: Proc. of ANTEC 2000 III, Orlando, Florida (2000), pp. 3228–3232.

  8. R. van Dijk, J. C. Sterk, D. Sgorbani, and F. van Keulen, “Lateral deformation of plastic bottles: Experiments, simulations, and prevention”, Packag. Technol. Sci., 11, 91–117 (1998).

    Article  Google Scholar 

  9. I. Widiastuti, I. Sbarski, and S. H. Masood, “Mechanical response of poly (lactic acid)-based packaging under liquid exposure”, J. Appl. Polym. Sci., 131, 40600 (2014).

    Article  Google Scholar 

  10. I. Widiastuti, I. Sbarski, and S. H. Masood, “Sorption characteristic of organic liquid and its effect on the mechanical performance of a PLA-based plastic”, J. Appl. Polym. Sci., 133, 43250 (2016).

    Article  Google Scholar 

  11. https://www.calpaclab.com/polypropylene-chemical-compatibility-chart/

  12. H. Essabir, M. O. Bensalah, D. Rodrigue, et al., “A comparison between bio- and mineral calcium carbonate on the properties of polypropylene composites”, Constr. Build. Mater., 134, 549–555 (2017).

    Article  CAS  Google Scholar 

  13. S. Ikram, O. Das, and D. Bhattacharyya, “A parametric study of mechanical and flammability properties of biochar reinforced polypropylene composites”, Compos. Part A-Appl. S., 91, 177–188 (2016).

    Article  CAS  Google Scholar 

  14. F. A. Ghasemi, I. Ghasemi, S. Menbari, et al., “Optimization of mechanical properties of polypropylene/talc/graphene composites using response surface methodology”, Polym. Test., 63, 283–292 (2016).

    Article  Google Scholar 

  15. M. A. Gafur, R. Nasrin, M. F. Mina, et al., “Structures and properties of the compression-molded istactic-polypropylene/talc composites: Effect of cooling and rolling”, Polym. Degrad. Stabil., 95, 1818–1825 (2010).

    Article  CAS  Google Scholar 

  16. A. O. Bouakkaz, A. Albedah, B. B. Bouiadjra, et al., “Effect of temperature on the mechanical properties of polypropylene–talc composites”, J. Thermoplast. Compos., 31, No. 7, 896–912 (2018).

    Article  CAS  Google Scholar 

  17. MODDE 5.0 (Modeling and Design), Umetrics AB, Umeå, Sweden.

  18. L. Eriksson, E. Johansson, N. Kettaneh-Wold, et al., Design of Experiments: Principles and Applications, Umeå Learnways AB, Stockholm (2000).

    Google Scholar 

  19. N. L. Frigon and D. Mathews, Practical Guide to Experimental Design, Wiley, New York (1996).

    Google Scholar 

  20. B. A. B. Bouiadjra, A. Albedah, M. M. Bouziane, et al., “Effects of voids growth on the damage of polypropylene/talc micro-composite”, J. Fail. Anal. Preven., 18, 1111–1119 (2018).

    Article  Google Scholar 

  21. S. A. Reffas, M. Elmeguenni, and M. Benguediab, “Analysis of void growth and coalescence in porous polymer materials”, Technol. Appl. Sci. Res., 3, 452–460 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. B. Bouiadjra.

Additional information

Translated from Problemy Mitsnosti, No. 3, p. 115, May – June, 2022.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouiadjra, B.B., Fekih, S.M., Bouziane, M.M. et al. Optimization of the Mechanical Strength of PP/TALC Micro-Composite after Immersion in Benzene. Strength Mater 54, 493–502 (2022). https://doi.org/10.1007/s11223-022-00424-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11223-022-00424-0

Keywords

Navigation