Skip to main content
Log in

Optimum Plans of Step-Stress Life Tests Using Failure-Censored Data Form Burr Type-Xii Distribution

  • Published:
Strength of Materials Aims and scope

In this paper, optimum test plans of step-stress partially accelerated life tests are developed using failure-censored data from Burr type-XII distribution. The maximum likelihood approach is applied to obtain the estimates of the acceleration factor and the parameters of the distribution. The minimization of the generalized asymptotic variance of the maximum likelihood estimators of the model parameters is used as an optimality criterion to develop optimum plans of the step-stress partially accelerated life tests. For illustrative purposes, simulation studies are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Nelson, Accelerated Testing: Statistical Models, Test Plans, and Data Analysis, John Wiley & Sons, New York (1990).

    Book  Google Scholar 

  2. Ali A. Ismail and A. Al Tamimi, “Optimum constant-stress partially accelerated life test plans using type-I censored data from the inverse Weibull distribution,” Strength Mater., 49, No. 6, 847–855 (2017).

    Article  Google Scholar 

  3. P. K. Goel, Some Estimation Problems in the Study of Tampered Random Variables, Technical Report No. 50, Department of Statistics, Carnegie Mellon University, Pittsburgh, PA (1971).

  4. D. S. Bai and S. W. Chung, “Optimal design of partially accelerated life tests for the exponential distribution under type-I censoring,” IEEE Trans. Reliab., 41, 400–406 (1992).

    Article  Google Scholar 

  5. Ali A. Ismail, “Statistical inference for a step-stress partially accelerated life test model with an adaptive Type-I progressively hybrid censored data fromWeibull distribution,” Stat. Pap., 57, No. 2, 271–301 (2016).

    Article  Google Scholar 

  6. Ali A. Ismail, “Optimum failure-censored step-stress life test plans for the Lomax distribution,” Strength Mater., 48, No. 3, 437–443 (2016).

    Article  Google Scholar 

  7. Ali A. Ismail, “Planning step-stress life tests for the generalized Rayleigh distribution under progressive type-II censoring with binomial removals,” Strength Mater., 49, No. 2, 292–306 (2017).

    Article  Google Scholar 

  8. Ali A. Ismail and K. Al-Habardi, “On designing time-censored step-stress life test for the Burr type-XII distribution,” Strength Mater., 49, No. 5, 699–709 (2017).

    Article  Google Scholar 

  9. I. W. Burr, “Cumulative frequency distribution,” Ann. Math. Stat., 13, No. 2, 215–232 (1942).

    Article  Google Scholar 

  10. D. S. Bai, S. W. Chung, and Y. R. Chun, “Optimal design of partially accelerated life tests for the lognormal distribution under Type-I censoring,” Reliab. Eng. Syst. Safe., 40, No. 1, 85–92 (1993).

    Article  Google Scholar 

Download references

Acknowledgments

This project was supported by the Agency for Post Graduate Studies & Research, Faculty of Economics & Political Science, Cairo University, Egypt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali A. Ismail.

Additional information

Translated from Problemy Prochnosti, No. 4, pp. 189 – 202, July – August, 2018.

Appendices

Appegesndix A.

Derivation of the second-order partial derivatives:

$$ {\displaystyle \begin{array}{c}\frac{\partial^2\ln L}{\partial {\upbeta}^2}=-\frac{n_a}{\upbeta^2}-\left(c-1\right)\sum \limits_{i=1}^n{\updelta}_{2i}\left({y}_i-\uptau \right)\frac{\left({y}_i-\uptau \right)}{{\left(\uptau +\upbeta \left({y}_i-\uptau \right)\right)}^2}\\ {}-\left(k+1\right)c\sum \limits_{i=1}^n\left({y}_i-\uptau \right){\updelta}_{2i}\left[\left({y}_i-\uptau \right)\left(c-1\right){A}^{c-2}{\left(1+{A}^c\right)}^{-1}-\left({y}_i-\uptau \right)c{A}^{2\left(c-1\right)}{\left(1+{A}^c\right)}^{-2}\right]\\ {}- kc\left(n-{n}_0\right)\left({y}_{(r)}-\uptau \right)\left[\left(c-1\right)\left({y}_{(r)}-\uptau \right){D}^{c-2}{\left(1+{D}^c\right)}^{-1}-\left({y}_{(r)}-\uptau \right)c{D}^{2\left(c-1\right)}{\left(1+{D}^c\right)}^{-2}\right]\\ {}=-\frac{n_a}{\upbeta^2}-\left(c-1\right)\sum \limits_{i=1}^n{\updelta}_{2i}{\left({y}_i-\uptau \right)}^2{A}^{-2}-\left(k+1\right)c\sum \limits_{i=1}^n{\left({y}_i-\uptau \right)}^2{\updelta}_{2i}\Big[\left(c-1\right){A}^{c-2}{\left(1+{A}^c\right)}^{-1}-c{A}^{2\left(c-1\right)}{\left(1+{A}^c\right)}^{-2}\\ {}- kc\left(n-{n}_0\right){\left({y}_{(r)}-\uptau \right)}^2\left[\left(c-1\right){D}^{c-2}{\left(1+{D}^c\right)}^{-1}-c{D}^{2\left(c-1\right)}{\left(1+{D}^c\right)}^{-2}\right],\\ {}\frac{\partial^2\ln L}{\mathrm{\partial \upbeta \partial }c}=\sum \limits_{i=1}^n{\updelta}_{2i}\left({y}_i-\uptau \right){A}^{-1}-k\left({y}_{(r)}-\uptau \right)\left(n-{n}_0\right)\\ {}\times \left[{D}^{c-1}{\left(1+{D}^c\right)}^{-1}+c{\left(1+{D}^c\right)}^{-1}{D}^{c-1}\ln D-c{D}^{c-1}{\left(1+{D}^c\right)}^{-2}{D}^c\ln D\right]\\ {}-\left(k+1\right)\sum \limits_{i=1}^n{\updelta}_{2i}\left({y}_i-\uptau \right)\left[{A}^{c-1}{\left(1+{A}^c\right)}^{-1}+c{\left(1+{A}^c\right)}^{-1}{A}^{c-1}\ln A-c{A}^{c-1}{\left(1+{A}^c\right)}^{-2}{A}^c\ln A\right],\\ {}\frac{\partial^2\ln L}{\mathrm{\partial \upbeta \partial }k}=-c\sum \limits_{i=1}^n{\updelta}_{2i}\left({y}_i-\uptau \right){A}^{c-1}{\left(1+{A}^c\right)}^{-1}-\left({y}_{(r)}-\uptau \right)\left(n-{n}_0\right)c{D}^{c-1}{\left(1+ Dc\right)}^{-1},\\ {}\frac{\partial^2\ln L}{\partial c}=-\frac{n_0}{c^2}-k\left(n-{n}_0\right)\ln D\left[{\left(1+{D}^c\right)}^{-1}{D}^c\ln D-{\left(1+{D}^c\right)}^{-2}{D}^{2c}\ln D\right]\\ {}-\left(k+1\right)\left[\sum \limits_{i=1}^n{\updelta}_{1i}\ln {y}_i\left\{{\left(1+{y}_i^c\right)}^{-1}{y}_i^c\ln {y}_i-{y}_i^{2c}{\left(1+{y}_i^c\right)}^{-2}\ln {y}_i\right\}\right]\\ {}-\left(k+1\right)\left[\sum \limits_{i=1}^n{\updelta}_{2i}\ln A\left\{{\left(1+{A}^c\right)}^{-1}{A}^c\ln A-{A}^{2c}{\left(1+{A}^c\right)}^{-2}\ln A\right\}\right],\\ {}\frac{\partial^2\ln L}{\partial c\partial k}=-\sum \limits_{i=1}^n{\updelta}_{1i}\ln {y}_i\left\{{\left(1+{y}_i^c\right)}^{-1}{y}_i^c\ln {y}_i\right\}-\sum \limits_{i=1}^n{\updelta}_{2i}\ln A{\left(1+{A}^c\right)}^{-1}{A}^c\ln A-\left(n-{n}_0\right){\left(1+{D}^c\right)}^{-1}{D}^c\ln D,\end{array}} $$

and

$$ \frac{\partial^2\ln k}{\partial {k}^2}=-\frac{n_0}{k^2}. $$

Appendix B.

The determinant of F and its partial derivative w.r.t. τ. The determinant of F is given by

$$ \mid F\mid ={f}_{11}\left({f}_{22}{f}_{33}-{f}_{23}^2\right)-{f}_{12}\left({f}_{12}{f}_{33}-{f}_{13}{f}_{23}\right)+{f}_{13}\left({f}_{12}{f}_{23}-{f}_{13}{f}_{22}\right). $$

Its partial derivative w.r.t. τ is obtained as

$$ {\displaystyle \begin{array}{c}\frac{\partial \mid F\mid }{\mathrm{\partial \uptau }}={f}_{11}\left({f}_{22}^{\prime }{f}_{33}^{\prime }+{f}_{22}{f}_{33}^{\prime }-2{f}_{23}{f}_{33}^{\prime}\right)+{f}_{11}^{\prime}\left({f}_{22}{f}_{33}-{f}_{23}^2\right)\\ {}-{f}_{12}\left({f}_{12}^{\prime }{f}_{33}+{f}_{12}{f}_{33}^{\prime }-{f}_{13}^{\prime }{f}_{23}-{f}_{13}{f}_{23}^{\prime}\right)-{f}_{12}^{\prime}\left({f}_{12}{f}_{33}-{f}_{13}{f}_{23}\right)\\ {}+{f}_{13}\left({f}_{12}^{\prime }{f}_{23}+{f}_{12}{f}_{23}^{\prime }-{f}_{13}^{\prime }{f}_{22}-{f}_{13}{f}_{22}^{\prime}\right)-{f}_{13}^{\prime}\left({f}_{12}{f}_{23}-{f}_{13}{f}_{22}\right),\end{array}} $$

where

$$ {\displaystyle \begin{array}{c}{f}_{11}^{\prime }=\left(c-1\right)\sum \limits_{i=1}^n{\updelta}_{2i}\left[-2\left({y}_i-\uptau \right){A}^{-2}-2{\left({y}_i-\uptau \right)}^2{A}^{-3}\left(1-\upbeta \right)\right]\\ {}+\left(k+1\right)c\sum \limits_{i=1}^n\left(c-1\right){\updelta}_{2i}\Big[-2\left({y}_i-\uptau \right){A}^{c-2}{\left(1+{A}^c\right)}^{-1}+{\left({y}_i-\uptau \right)}^2\\ {}\times \left(1-\upbeta \right)\left(\left(c-2\right){A}^{c-3}{\left(1+{A}^c\right)}^{-1}-c{A}^{2c-3}{\left(1+{A}^c\right)}^{-2}\right)\Big]\\ {}+\left(k+1\right)c\sum \limits_{i=1}^nc{\updelta}_{2i}\Big[-2\left({y}_i-\uptau \right){A}^{2\left(c-1\right)}{\left(1+{A}^c\right)}^{-2}+{\left({y}_i-\uptau \right)}^2\\ {}\times 2\left(1-\upbeta \right)\left(\left(c-1\right){A}^{2c-3}{\left(1+{A}^c\right)}^{-2}-c{A}^{3\left(c-1\right)}{\left(1+{A}^c\right)}^{-3}\right)\Big]\\ {}+ kc\left(n-{n}_0\right)\left(c-1\right)\Big[-2\left({y}_{(r)}-\uptau \right){D}^{c-2}{\left(1+{D}^c\right)}^{-1}+\left(1-\upbeta \right){\left({Y}_c-\uptau \right)}^2\\ {}\times \left(\left(c-2\right){D}^{c-3}{\left(1+{D}^c\right)}^{-1}-c{D}^{2c-3}{\left(1+{D}^c\right)}^{-2}\right)\Big]\\ {}+ kc\left(n-{n}_0\right)\Big[-2\left({y}_{(r)}-\uptau \right){D}^{2\left(c-1\right)}{\left(1+{D}^c\right)}^{-2}+2{\left({y}_{(r)}-\uptau \right)}^2\left(1-\upbeta \right)\\ {}\times \left(\left(c-1\right){D}^{2c-3}{\left(1+{D}^c\right)}^{-2}-{D}^{3\left(c-1\right)}c{\left(1+{D}^c\right)}^{-3}\right)\Big],\\ {}{f}_{22}^{\prime }=k\left(n-{n}_0\right)\left(1-\upbeta \right)\left[2{D}^{c-1}{\left(1+{D}^c\right)}^{-1}\ln D-c{\left(\ln D\right)}^2\left({D}^{2c-1}{\left(1+{D}^c\right)}^2+{D}^{c-1}{\left(1+{D}^c\right)}^{-1}\right)\right]\\ {}-k\left(n-{n}_0\right)\left(1-\upbeta \right)\Big[{D}^{2c-1}{\left(1+{D}^c\right)}^{-2}2\ln D+2c\left(1-\upbeta \right){\left(\ln D\right)}^2\\ {}\times \left\{-{D}^{3c-1}{\left(1+{D}^c\right)}^{-3}+{D}^{2c-1}{\left(1+{D}^c\right)}^{-2}\right\}\Big]\\ {}+\left(k+1\right)\left(1-\upbeta \right)\sum \limits_{i=1}^n{\updelta}_{2i}\Big[2{A}^{c-1}{\left(1+{A}^c\right)}^{-1}\ln A+c{\left(\ln A\right)}^2\\ {}\times \left\{-{\left(1+{A}^c\right)}^{-2}{A}^{2c-1}+{\left(1+{A}^c\right)}^{-1}{A}^{c-1}\right\}\Big]\\ {}-\left(k+1\right)\left(1-\upbeta \right)\sum \limits_{i=1}^n{\updelta}_{2i}\Big[2{A}^{2c-1}{\left(1+{A}^c\right)}^{-2}\ln A+2c{\left(\ln A\right)}^2\left\{{\left(1+{A}^c\right)}^{-2}{A}^{2c-1}-{\left(1+{A}^c\right)}^{-3}{A}^{3c-1}\right\},\\ {}{f}_{33}^{\prime }=0,\\ {}{f}_{23}^{\prime }=\sum \limits_{i=1}^n{\updelta}_{2i}\left(1-\upbeta \right)\Big[2{A}^{c-1}{\left(1+{A}^c\right)}^{-1}\ln A+c{\left(\ln A\right)}^2{\left(1+{A}^c\right)}^{-1}{A}^{c-1}-{\left(1+{A}^c\right)}^{-1}{A}^{2c-1}\\ {}+\left(n-{n}_0\right)\left(1-\upbeta \right)\left[-{D}^{2c-1}{\left(1+{D}^c\right)}^{-2}c\ln D+{\left(1+{D}^c\right)}^{-1}{D}^{c-1}\left\{c\ln D+1\right\}\right],\\ {}{f}_{12}^{\prime }=\sum \limits_{i=1}^n{\updelta}_{2i}\left[{A}^{-1}+\left(1-\upbeta \right)\left({y}_i-\uptau \right){A}^{-2}\right]+k\left(n-{n}_0\right)\left\{\left(1-\upbeta \right)\left({Y}_c-\uptau \right)\right\}\\ {}\times \left[{D}^{c-2}\left(c-1\right){\left(1+{D}^c\right)}^{-1}-c{\left(1+{D}^c\right)}^{-2}{D}^{2\left(c-1\right)}\right]-{D}^{c-1}{\left(1+{D}^c\right)}^{-1}\\ {}-c{\left(1+{D}^c\right)}^{-1}{D}^{c-1}\ln D+c\left({Y}_c-\uptau \right)\left(1-\upbeta \right)\Big\{-{D}^{2\left(c-1\right)}c{\left(1+{D}^c\right)}^{-2}\ln D\\ {}+{D}^{c-2}{\left(1+{D}^c\right)}^{-1}\left[1+\left(c-1\right)\ln D\right]\Big\}+c{D}^{2c-1}{\left(1+{D}^c\right)}^{-2}\ln D-c\left(1-\upbeta \right)\left({Y}_c-\uptau \right)\\ {}\times \left[{D}^{2c-2}{\left(1+{D}^c\right)}^{-2}-2c{\left(1+{D}^c\right)}^{-3}{D}^{3c-2}\ln D+\left(2c-1\right){\left(1+{D}^c\right)}^{-2}{D}^{2c-2}\ln D\right]\Big\}\\ {}+\left(k+1\right)\sum \limits_{i=1}^n{\updelta}_{2i}\left({y}_i-\uptau \right)\left\{\left(1-\upbeta \right)\right[\left(c-1\right){A}^{c-2}{\left(1+{A}^c\right)}^{-1}-c{A}^{2\left(c-1\right)}{\left(1+{A}^c\right)}^{-2}-{c}^2{A}^{2\left(c-1\right)}{\left(1+{A}^c\right)}^{-2}\ln A\\ {}+c{A}^{c-2}{\left(1+{A}^c\right)}^{-1}\left(1+\left(c-1\right)\ln A\right)-c{A}^{2\left(c-1\right)}{\left(1+{A}^c\right)}^{-2}\\ {}+2{c}^2{A}^{3c-2}{\left(1+{A}^c\right)}^{-3}\ln A-c\left(2c-1\right){A}^{2c-2}{\left(1+{A}^c\right)}^{-2}\ln A\Big\}\\ {}-\left[{A}^{c-1}{\left(1+{A}^c\right)}^{-1}+c{\left(1+{A}^c\right)}^{-1}{A}^{c-1}\ln A-c{A}^{2c-1}{\left(1+{A}^c\right)}^{-2}\ln A\right],\\ {}{f}_{13}^{\prime }=\sum \limits_{i=1}^n{\updelta}_{2i}c\Big\{\left({y}_i-\uptau \right)\left(1-\upbeta \right)\left[\left(c-1\right){A}^{c-2}{\left(1+{A}^c\right)}^{-1}-c{A}^{2\left(c-1\right)}{\left(1+{A}^c\right)}^{-2}\right]\\ {}-{A}^{c-1}{\left(1+{A}^c\right)}^{-1}\left\}+\left(n-{n}_0\right)c\right[\left({y}_{(r)}-\uptau \right)\left(1-\upbeta \right)\Big[\left(c-1\right){D}^{c-2}{\left(1+{D}^c\right)}^{-1}\\ {}-c{D}^{2\left(c-1\right)}{\left(1+{D}^c\right)}^{-2}\left]-{D}^{c-1}{\left(1+{D}^c\right)}^{-1}\right].\end{array}} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismail, A.A., Al-Habardi, K. Optimum Plans of Step-Stress Life Tests Using Failure-Censored Data Form Burr Type-Xii Distribution. Strength Mater 50, 674–685 (2018). https://doi.org/10.1007/s11223-018-0012-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11223-018-0012-8

Keywords

Navigation