Skip to main content
Log in

Probabilistic Model of Fatigue Damage Accumulation in Rubberlike Materials

  • Published:
Strength of Materials Aims and scope

The paper presents a mathematical model of the non-localized fatigue damage accumulation process in rubberlike materials. A relation for the determination of the constants of the corresponding equation with allowance for known fatigue curve characteristics, in particular for their random spread, is proposed. Computational relationships for the determination of the probabilistic characteristics of damage have been derived. Experimental data for the determination of realization of the fatigue accumulation process in rubber specimens, which are in good agreement with theoretical results, are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. N.-A. Noda, B. Kim, K. Ota, et al., “Effect of dimensions of crimped portion upon sealing performance of hydraulic brake hose by applying three-dimensional FEM analysis,” J. Solid Mech. Mater. Eng., 7, No. 2, 281–292 (2013).

    Article  Google Scholar 

  2. Y. Luo, Y. Liu, and H. P. Yin, “Numerical investigation of nonlinear properties of a rubber absorber in rail fastening systems,” Int. J. Mech. Sci., 69, 107–113 (2013).

    Article  Google Scholar 

  3. S. Polukoshko, V. Gonca, and J. Svabs, “Vibration damping using laminated elastomeric structures,” Solid State Phenomena, 220-221, 81–90 (2015).

    Article  Google Scholar 

  4. J. B. Suh, A. N. Gent, and S. G. Kelly, “Shear of rubber tube springs,” Int. J. Non-Linear Mech., 42, No. 9, 1116–1126 (2007).

    Article  Google Scholar 

  5. M. Brinkmeier, U. Nackenhorst, and M. Ziefle, “Finite element analysis of rolling tires a state of the art review,” in: Proc. of Int. CTI Conf. Automotive Tire Technology, No. 1994, Stuttgart (2007), pp. 1–10.

  6. E. I. Bespalova and G. P. Urusova, “Stressed state of multilayer shells of revolution simulating pneumatic tires operating in contact with rigid base,” Strength Mater., 39, No. 3, 275–283 (2007).

    Article  Google Scholar 

  7. W. V. Mars and A. Fatemi, “A literature survey on fatigue analysis approaches for rubber,” Int. J. Fatigue, 24, No. 9, 949–961 (2002).

    Article  Google Scholar 

  8. P. M. Schubel, E. E. Gdoutos, and I. M. Daniel, “Fatigue characterization of tire rubber,” Theor. Appl. Fract. Mech., 42, No. 2, 149–154 (2004).

    Article  Google Scholar 

  9. G. Ayoub, M. Nait-Abdelaziz, F. Zairi, and J. M. Gloaguen, “Multiaxial fatigue life prediction of rubber-like materials using the continuum damage mechanics approach,” Proc. Eng., 2, No. 1, 985–993 (2010).

    Article  Google Scholar 

  10. G. Ayoub, M. Nait-Abdelaziz, F. Zairi, et al., “A continuum damage model for the high-cycle fatigue life prediction of styrene-butadiene rubber under multiaxial loading,” Int. J. Solids Struct., 48, No. 18, 2458–2466 (2011).

    Article  Google Scholar 

  11. J. Lemaitre, Engineering Damage Mechanics, Springer-Verlag, Berlin–Heidelberg (2005).

    Google Scholar 

  12. S. Murakami, Continuum Damage Mechanics, Springer (2012).

  13. V. T. Troshchenko, Yu. I. Koval’, and E. I. Mitchenko, “Scatter in the fatigue characteristics of steels and its analysis with allowance for cyclic inelastic strains,” Strength Mater., 39, No. 3, 223–236 (2007).

  14. Q. Sun, H.-N. Dui, and X.-L. Fan, “A statistically consistent fatigue damage model based on miner’s rule,” Int. J. Fatigue, 69, 16–21 (2014).

    Article  Google Scholar 

  15. Y. X. Zhao and H. B. Liu, “Weibull modeling of the probabilistic S–N curves for rolling contact fatigue,” Int. J. Fatigue, 66, 47–54 (2014).

    Article  Google Scholar 

  16. N. I. Bobyr’, A. P. Grabovskii, A. P. Khalimon, et al., “Kinetics of scattered fracture in structural metals under elastoplastic deformation,” Strength Mater., 39, No. 3, 237–245 (2007).

    Article  Google Scholar 

  17. A. Movaghar and G. I. L’vov, “Experimental investigation of the fatigue strength of STÉF-1 fiberglass composite,” Strength Mater., 44, No. 2, 218–225 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. O. Larin.

Additional information

Translated from Problemy Prochnosti, No. 6, pp. 84 – 94, November – December, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larin, O.O. Probabilistic Model of Fatigue Damage Accumulation in Rubberlike Materials. Strength Mater 47, 849–858 (2015). https://doi.org/10.1007/s11223-015-9722-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11223-015-9722-3

Keywords

Navigation