Skip to main content

Advertisement

Log in

An adaptive spatial model for precipitation data from multiple satellites over large regions

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

Satellite measurements have of late become an important source of information for climate features such as precipitation due to their near-global coverage. In this article, we look at a precipitation dataset during a 3-hour window over tropical South America that has information from two satellites. We develop a flexible hierarchical model to combine instantaneous rainrate measurements from those satellites while accounting for their potential heterogeneity. Conceptually, we envision an underlying precipitation surface that influences the observed rain as well as absence of it. The surface is specified using a mean function centered at a set of knot locations, to capture the local patterns in the rainrate, combined with a residual Gaussian process to account for global correlation across sites. To improve over the commonly used pre-fixed knot choices, an efficient reversible jump scheme is used to allow the number of such knots as well as the order and support of associated polynomial terms to be chosen adaptively. To facilitate computation over a large region, a reduced rank approximation for the parent Gaussian process is employed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agarwal, D.K., Gelfand, A.E., Citron-Pousty, S.: Zero-inflated models with application to spatial count data. Environ. Ecol. Stat. 9, 341–355 (2002)

    Article  MathSciNet  Google Scholar 

  • Albert, J.H., Chib, S.: Bayesian analysis of binary and polychotomous response data. J. Am. Stat. Assoc. 88(422), 669–679 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  • Anderes, E.B., Stein, M.L.: Estimating deformations of isotropic Gaussian random fields on the plane. Ann. Stat. 36, 719–741 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Austin, P.M., Houze, R.A.: Analysis of the structure of precipitation patterns in New England. J. Appl. Meteorol. 11, 926–935 (1972)

    Article  Google Scholar 

  • Ba, M.B., Gruber, A.: Goes multispectral rainfall algorithm (gmsra). J. Appl. Meteorol. 40, 1500–1514 (2001)

    Article  Google Scholar 

  • Banerjee, S.: On geodetic distance computations in spatial modeling. Biometrics 61(2), 617–625 (2005)

    Article  MathSciNet  Google Scholar 

  • Banerjee, S., Gelfand, A.E., Knight, J.R., Sirmans, C.F.: Spatial modeling of house prices using normalized distance-weighted sums of stationary processes. J. Bus. Econ. Stat. 22(2), 206–213 (2004)

    Article  MathSciNet  Google Scholar 

  • Banerjee, S., Gelfand, A., Finley, A., Sang, H.: Gaussian predictive process models for large spatial data sets. J. R. Stat. Soc. B 70(4), 825–848 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Bardossy, A., Plate, E.J.: Space-time model for daily rainfall using atmospheric circulation patterns. Water Resour. Res. 28(5), 1247–1259 (1992)

    Article  Google Scholar 

  • Bell, T.L., Kundu, P.K.: A study of the sampling error in satellite rainfall estimates using optimal averaging of data and a stochastic model. J. Climate 9, 1251–1268 (1996)

    Article  Google Scholar 

  • Bell, T.L., Abdullah, A., Martin, R.L., North, G.R.: Sampling errors for satellite-derived tropical rainfall: Monte Carlo study using a space-time stochastic model. J. Geophys. Res. 95(D3), 2195–2205 (1990)

    Article  Google Scholar 

  • Bell, T.L., Kundu, P.K., Kummerow, C.D.: Sampling errors of ssm/i and trmm rainfall averages: comparison with error estimates from surface data and a simple model. J. Appl. Meteorol. 40, 938–954 (2001)

    Article  Google Scholar 

  • Chakraborty, A., Gelfand, A.E., Wilson, A.M., Latimer, A.M., Silander, J.A.: Modeling large scale species abundance with latent spatial processes. Ann. Appl. Stat. 4(3), 1403–1429 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  • Chakraborty, A., Mallick, B.K., McClarren, R.G., Kuranz, C.C., Bingham, D.R., Grosskopf, M.J., Rutter, E., Stripling, H.F., Drake, R.P.: Spline-based emulators for radiative shock experiments with measurement error. J. Am. Stat. Assoc. 108, 411–428 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  • Chib, S., Carlin, B.P.: On mcmc sampling in hierarchical longitudinal models. Stat. Comput. 9(1), 17–26 (1999)

    Article  Google Scholar 

  • Cohen, A.C.: Truncated and Censored Samples, 1st edn. Marcel Dekker, New York (1991)

    Book  MATH  Google Scholar 

  • Cooley, D., Nychka, D., Naveau, P.: Bayesian spatial modeling of extreme precipitation return levels. J. Am. Stat. Assoc. 102(479), 824–840 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Cressie, N., Johannesson, G.: Fixed rank kriging for very large spatial data sets. J. R. Stat. Soc. B 70(1), 209–226 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Denison, D.G.T., Mallick, B.K., Smith, A.F.M.: Bayesian mars. Stat. Comput. 8(4), 337–346 (1998)

    Article  Google Scholar 

  • Felgate, D.G., Read, D.G.: Correlation analysis of the cellular structure of storms observed by raingauges. J. Hydrol. 24, 191–200 (1975)

    Article  Google Scholar 

  • Finley, A., Sang, H., Banerjee, S., Gelfand, A.: Improving the performance of predictive process modeling for large datasets. Comput. Stat. Data Anal. 53(8), 2873–2884 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • Finley, A.O., Banerjee, S., MacFarlane, D.W.: A hierarchical model for quantifying forest variables over large heterogeneous landscapes with uncertain forest areas. J. Am. Stat. Assoc. 106(493), 31–48 (2011)

    Article  MathSciNet  Google Scholar 

  • Friedman, J.: Multivariate adaptive regression splines. Ann. Stat. 19(1), 1–67 (1991)

    Article  MATH  Google Scholar 

  • Fuentes, M.: Spectral methods for nonstationary spatial processes. Biometrika 89, 197–210 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Fuentes, M., Reich, B., Lee, G.: Spatial-temporal mesoscale modelling of rainfall intensity using gauge and radar data. Ann. Appl. Stat. 2, 1148–1169 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Furrer, R., Genton, M.G., Nychka, D.: Covariance tapering for interpolation of large spatial datasets. J. Comput. Graph. Stat. 15(3), 502–523 (2006)

    Article  MathSciNet  Google Scholar 

  • Gelfand, A.E., Kim, H.J., Sirmans, C.F., Banerjee, S.: Spatial modeling with spatially varying coefficient processes. J. Am. Stat. Assoc. 98(462), 387–396 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • Gelfand, A.E., Banerjee, S., Finley, A.O.: Spatial design for knot selection in knot-based dimension reduction models. In: Mateu, J., Müller, W.G. (eds.) Spatio-Temporal Design: Advances in Efficient Data Acquisition, pp. 142–169. Wiley, Chichester (2012)

    Chapter  Google Scholar 

  • Guhaniyogi, R., Finley, A.O., Banerjee, S., Gelfand, A.E.: Adaptive Gaussian predictive process models for large spatial datasets. Environmetrics 22(8), 997–1007 (2011)

    Article  MathSciNet  Google Scholar 

  • Higdon, D.: A process-convolution approach to modelling temperatures in the North Atlantic Ocean. Environ. Ecol. Stat. 5(2), 173–190 (1998)

    Article  Google Scholar 

  • Higdon, D.: Space and space-time modeling using process convolutions. In: Anderson, C., Barnett, V., Chatwin, P.C., El-Shaarawi, A.H. (eds.) Quantitative Methods for Current Environmental Issues, pp. 37–56. Springer, London (2002)

    Chapter  Google Scholar 

  • Higdon, D., Swall, J., Kern, J.: Non-stationary spatial modeling. In: Bernardo, J.M., Berger, J.O., Dawid, A.P., Smith, A.F.M. (eds.) Bayesian Statistics, vol. 7, pp. 181–197. Oxford University Press, Oxford (1999)

    Google Scholar 

  • Huffman, G.J., Adler, R.F., Stocker, E.F., Bolvin, D.T., Nelkin, E.J.: A trmm-based system for real-time quasi-global merged precipitation estimates. In: TRMM International Science Conference, Honolulu, pp. 22–26 (2002)

    Google Scholar 

  • Huffman, G.J., Adler, R.F., Bolvin, D.T., Gu, G., Nelkin, E.J., Bowman, K.P., Hong, Y., Stocker, E.F., Wolef, D.B.: The trmm multisatellite precipitation analysis (tmpa): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 8, 38–55 (2007)

    Article  Google Scholar 

  • Joyce, R.J., Janowiak, J.E., Arkin, P.A., Xie, P.: Cmorph: a method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeorol. 5, 487–503 (2004)

    Article  Google Scholar 

  • Jun, M.: Non-stationary cross-covariance models for multivariate processes on a globe. Scand. J. Stat. 38, 726–747 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • Jun, M., Stein, M.L.: Nonstationary covariance models for global data. Ann. Appl. Stat. 2(4), 1271–1289 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Kammann, E.E., Wand, M.P.: Geoadditive models. J. R. Stat. Soc., Ser. C, Appl. Stat. 52(1), 1–18 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • Kaufman, C.G., Schervish, M.J., Nychka, D.W.: Covariance tapering for likelihood-based estimation in large spatial data sets. J. Am. Stat. Assoc. 103(484), 1545–1555 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Kidd, C.: Satellite rainfall climatology: a review. Int. J. Climatol. 21, 1041–1066 (2001)

    Article  Google Scholar 

  • Lee, G.W., Zawadzki, I.: Variability of drop size distributions: time-scale dependence of the variability and its effects on rain estimation. J. Appl. Meteorol. 44, 241–255 (2005)

    Article  Google Scholar 

  • Lethbridge, M.: Precipitation probability and satellite radiation data. Mon. Weather Rev. 95(7), 487–490 (1967)

    Article  Google Scholar 

  • Marchenko, Y.V., Genton, M.G.: Multivariate log-skew-elliptical distributions with applications to precipitation data. Environmetrics 21(3–4), 318–340 (2010)

    MathSciNet  Google Scholar 

  • McConnell, A., North, G.R.: Sampling errors in satellite estimates of tropical rain. J. Geophys. Res. 92(D8), 9567–9570 (1987)

    Article  Google Scholar 

  • Negri, A.J., Xu, L., Adler, R.F.: A trmm-calibrated infrared rainfall algorithm applied over Brazil. J. Geophys. Res. 107(D20), 8048–8062 (2002)

    Article  Google Scholar 

  • Paciorek, C., Schervish, M.: Spatial modelling using a new class of nonstationary covariance functions. Environmetrics 17, 483–506 (2006)

    Article  MathSciNet  Google Scholar 

  • Richardson, S., Green, P.J.: On Bayesian analysis of mixtures with an unknown number of components. J. R. Stat. Soc. B 59(4), 731–792 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  • Rodríguez-Iturbe, I., Mejía, J.M.: The design of rainfall networks in time and space. Water Resour. Res. 10, 713–728 (1974)

    Article  Google Scholar 

  • Sampson, P.D., Guttorp, P.: Nonparametric estimation on nonstationary spatial covariance structure. J. Am. Stat. Assoc. 87, 108–119 (1992)

    Article  Google Scholar 

  • Sang, H., Gelfand, A.E.: Hierarchical modeling for extreme values observed over space and time. Environ. Ecol. Stat. 16(3), 407–426 (2009)

    Article  MathSciNet  Google Scholar 

  • Sang, H., Huang, J.Z.: A full scale approximation of covariance functions for large spatial data sets. J. R. Stat. Soc. B 74(1), 111–132 (2012)

    Article  MathSciNet  Google Scholar 

  • Schmidt, A.M., O’Hagan, A.: Bayesian inference for non-stationary spatial covariance structure via spatial deformations. J. R. Stat. Soc. B 65, 743–758 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • Simpson, J., Adler, R.F., North, G.R.: A proposed Tropical Rainfall Measuring Mission (TRMM) satellite. Bull. Am. Meteorol. Soc. 69(3), 278–295 (1988)

    Article  Google Scholar 

  • Sorooshian, S., Hsu, K.L., Gao, X., Gupta, H., Imam, B., Braithwaite, D.: Evaluation of Persiann system satellite-based estimates of tropical rainfall. Bull. Am. Meteorol. Soc. 81(9), 2035–2046 (2000)

    Article  Google Scholar 

  • Stein, M., Chi, Z., Welty, L.: Approximating likelihoods for large spatial data sets. J. R. Stat. Soc. B 66, 275–296 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Sun, Y., Li, B., Genton, M.G.: Geostatistics for large datasets. In: Porcu, E., Montero, J.M., Schlather, M. (eds.) Advances and Challenges in Space-Time Modelling of Natural Events, vol. 207, pp. 55–77. Springer, Berlin (2012)

    Chapter  Google Scholar 

  • Tanner, T.A., Wong, W.H.: The calculation of posterior distributions by data augmentation. J. Am. Stat. Assoc. 82, 528–549 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  • Vicente, G.A., Scofield, R.A., Menzel, W.P.: The operational goes infrared rainfall estimation technique. Bull. Am. Meteorol. Soc. 79(9), 1883–1898 (1998)

    Article  Google Scholar 

  • Weng, F.W., Zhao, L., Ferraro, R., Pre, G., Li, X., Grody, N.C.: Advanced microwave sounding unit (amsu) cloud and precipitation algorithms. Radio Sci. 38(4), 8068–8079 (2003)

    Article  Google Scholar 

  • Wilheit, T.T.: A satellite technique for quantitatively mapping rainfall rates over the ocean. J. Appl. Meteorol. 16, 551–560 (1977)

    Article  Google Scholar 

  • Wilheit, T.T., Chang, A.T.C., Rao, M.S.V., Rodgers, E.B., Theon, J.S.: A satellite technique for quantitatively mapping rainfall rates over the oceans. J. Appl. Meteorol. 16(5), 551–560 (1977)

    Article  Google Scholar 

  • Xie, P., Arkin, P.A.: Global monthly precipitation estimates from satellite-observed outgoing longwave radiation. J. Climate 11, 137–164 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Texas A&M University Brazos HPC cluster that contributed to the research reported here (http://brazos.tamu.edu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avishek Chakraborty.

Additional information

The research of Bani K. Mallick and Avishek Chakraborty was supported by National Science Foundation grant DMS 0914951. Research of Marc G. Genton was partially supported by NSF grants DMS-1007504 and DMS-1100492. The research in this article was also partially supported by Award No. KUSC1-016-04 made by King Abdullah University of Science and Technology (KAUST).

Appendix:  Marginalizing out ν y and \(\sigma^{2}_{y}\) for estimation of spline parameters in μ y (s)

Appendix:  Marginalizing out ν y and \(\sigma^{2}_{y}\) for estimation of spline parameters in μ y (s)

Denote by … all parameters except \(\nu,\sigma^{2}_{y}\). Let P=[ϕ 1[x(s)],ϕ 2[x(s)],…,ϕ k [x(s)]], S=y(s)− y . We have,

$$\begin{aligned} &p\bigl(y(\mathbf{s})|\ldots \bigr) \\ &\quad \propto \int_{\nu_y} \int _{\sigma_y^2} p\bigl(y(\mathbf{s}) | \nu_y, \sigma_y^2,\ldots\bigr) p\bigl(\nu_y | \sigma^2_y\bigr) p\bigl(\sigma^2_y \bigr) d\sigma_y^2 d\nu_y, \\ &\quad \propto \bigl(2\pi\tau^2_y\bigr)^{-k/2} \int _{\nu_y} \int_{\sigma^2_y} \bigl( \sigma^2_y\bigr)^{-\frac{n+k}{2} - a_\sigma-1 } \\ &\qquad {}\times\exp \biggl[ - \frac{1}{2 \sigma^2_y} \bigl( S^T D^{-1}S + \nu_y^T \nu_y/\tau^2_y + 2 b_\sigma\bigr) \biggr] d\sigma^2_y d \nu_y, \\ &\quad \propto \bigl(2\pi\tau^2_y\bigr)^{-k/2} \varGamma\biggl( \frac{n}{2} + a_\sigma\biggr) \\ &\qquad {} \int _{\nu_y} \biggl( \frac{S^T D^{-1}S + \nu_y^T \nu_y /\tau^2_y}{2} + b_\sigma \biggr)^{-\frac{n+m+k}{2} - a_\sigma} d\nu_y. \end{aligned}$$

Now write \(S^{T} D^{-1}S + \nu_{y}^{T} \nu_{y} = \nu_{y}^{T} A \nu_{y} - 2 \nu_{y}^{T} B + C\), where \(A = P^{T}D^{-1}P + \frac{ I_{k}}{\tau^{2}_{y}}\), B=P T D −1 S y , \(C = S_{y}^{T} D^{-1}S_{y}\). Then we have, \(S^{T} D^{-1}S + \nu_{y}^{T} \nu_{y} + 2 b_{\sigma}= (\nu_{y} - \mu_{k})^{T} \varSigma ^{-1}_{k} (\nu_{y} - \mu_{k}) + c_{0k}\), where μ k =A −1 B,Σ k =A −1,c 0k =Cb T A −1 b+2b σ . Denote d=n+2a σ . Then

$$\begin{aligned} &p\bigl(y(\mathbf{s})|\ldots\bigr) \\ &\quad \propto \bigl(\pi\tau^2_y \bigr)^{-k/2} c_{0k}^{-\frac {d+k}{2} }\varGamma\biggl( \frac{d+k}{2} \biggr) \int_{\nu_y} \biggl[ \frac{1}{d} (\nu_y - \mu_k)^T \\ &\qquad {}\times \biggl( \frac{ c_{0k} \varSigma_k}{d} \biggr)^{-1} (\nu_y-\mu _k) + 1 \biggr]^{-\frac{d+k}{2} } d\nu_y. \end{aligned}$$

The integrand is the pdf (up to a constant) for the k-variate t distribution with mean μ k , dispersion \(\frac{ c_{0k} \varSigma_{k}}{d}\) and degrees of freedom d. Hence, we obtain the closed form expression for \(p(y(\mathbf{s}) |\ldots) \propto(\tau^{2}_{y})^{-k/2} c_{0k}^{-\frac{d}{2} } |\varSigma_{k}|^{1/2}\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakraborty, A., De, S., Bowman, K.P. et al. An adaptive spatial model for precipitation data from multiple satellites over large regions. Stat Comput 25, 389–405 (2015). https://doi.org/10.1007/s11222-013-9439-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-013-9439-8

Keywords

Navigation