Skip to main content
Log in

New Improved Optimized Method for Medical Image Enhancement Based on Modified Shark Smell Optimization Algorithm

  • Original Paper
  • Published:
Sensing and Imaging Aims and scope Submit manuscript

Abstract

Medical image enhancement is a principal category of the medical image processing which has a great impact on the final diagnosis results. In this paper, a new optimization technique has been presented for enhancing the contrast of the medical images. The main idea here is to propose an optimization problem by considering both global and local enhancement to achieve a strong image enhancement method. The other novelty here is to propose a new improved version of shark smell optimization algorithm to apply to the mentioned optimization problem for enhancing the algorithm convergence. Final results are analyzed based on five different measure indexes and are compared with five popular methods for illustrating the superiority of the presented technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abedini, Z., Sari, A. A., Foroushani, A. R., & Jaafaripooyan, E. (2018). Diffusion of advanced medical imaging technology, CT, and MRI scanners, in Iran: A qualitative study of determinants. The International Journal of Health Planning and Management, 34(1), e397–e410.

    Google Scholar 

  2. Razmjooy, N., Ramezani, M., & Ghadimi, N. (2017). Imperialist competitive algorithm-based optimization of neuro-fuzzy system parameters for automatic red-eye removal. International Journal of Fuzzy Systems, 19, 1144–1156.

    Google Scholar 

  3. Moallem, P., Razmjooy, N., & Ashourian, M. (2013). Computer vision-based potato defect detection using neural networks and support vector machine. International Journal of Robotics and Automation, 28, 137–145.

    Google Scholar 

  4. Razmjooy, N., Mousavi, B. S., Sadeghi, B., & Khalilpour, M. (2011). Image thresholding optimization based on imperialist competitive algorithm. In 3rd Iranian conference on electrical and electronics engineering (ICEEE2011), 2011.

  5. Razmjooy, N., Mousavi, B. S., & Soleymani, F. (2012). A real-time mathematical computer method for potato inspection using machine vision. Computers & Mathematics with Applications, 63, 268–279.

    MATH  Google Scholar 

  6. Razmjooy, N., Mousavi, B. S., Soleymani, F., & Khotbesara, M. H. (2013). A computer-aided diagnosis system for malignant melanomas. Neural Computing and Applications, 23, 2059–2071.

    Google Scholar 

  7. Gibbons, M. (2019). The recalcitrant invention of X-ray images. Technical Communication Quarterly, 28, 54–68.

    Google Scholar 

  8. El-Torky, D., Al-Berry, M. N., Salem, M. A.-M., & Roushdy, M. I. (2019). 3D visualization of brain tumors using MR images: a survey. Current Medical Imaging Reviews, 15, 353–361.

    Google Scholar 

  9. Kallel, F., & Hamida, A. B. (2017). A new adaptive gamma correction based algorithm using DWT-SVD for non-contrast CT image enhancement. IEEE Transactions on Nanobioscience, 16, 666–675.

    Google Scholar 

  10. Kaur, R., & Kaur, S. (2016). Comparison of contrast enhancement techniques for medical image. In 2016 conference on emerging devices and smart systems (ICEDSS), 2016 (pp. 155–159).

  11. Oktay, O., Ferrante, E., Kamnitsas, K., Heinrich, M., Bai, W., Caballero, J., et al. (2017). Anatomically constrained neural networks (ACNNs): application to cardiac image enhancement and segmentation. IEEE Transactions on Medical Imaging, 37, 384–395.

    Google Scholar 

  12. Sghaier, M., Chouzenoux, E., Palma, G., Pesquet, J.-C., & Muller, S. (2019). A new approach for microcalcification enhancement in digital breast tomosynthesis reconstruction. In 2019 IEEE 16th international symposium on biomedical imaging (ISBI 2019), 2019 (pp. 1450–1454).

  13. Abdullah-Al-Wadud, M., Kabir, M. H., Dewan, M. A. A., & Chae, O. (2007). A dynamic histogram equalization for image contrast enhancement. IEEE Transactions on Consumer Electronics, 53, 593–600.

    Google Scholar 

  14. Yang, L., Gang, P., Cheng, L., Xiong, Y., & Li, L. (2012). Improved LAHE and enhancement algorithm based on self-adaptive Otsu of background segregation. Journal of Huizhou University (Natural Science Edition), 3, 391–401.

    Google Scholar 

  15. Wu, H.-T., Huang, J., & Shi, Y.-Q. (2015). A reversible data hiding method with contrast enhancement for medical images. Journal of Visual Communication and Image Representation, 31, 146–153.

    Google Scholar 

  16. Bhateja, V., Misra, M., & Urooj, S. (2016). Non-linear polynomial filters for edge enhancement of mammogram lesions. Computer Methods and Programs in Biomedicine, 129, 125–134.

    Google Scholar 

  17. Lin, W.-C., & Wang, J.-W. (2018). Edge detection in medical images with quasi high-pass filter based on local statistics. Biomedical Signal Processing and Control, 39, 294–302.

    Google Scholar 

  18. Singh, M., Verma, A., & Sharma, N. (2017). Bat optimization based neuron model of stochastic resonance for the enhancement of MR images. Biocybernetics and Biomedical Engineering, 37, 124–134.

    Google Scholar 

  19. Daniel, E., & Anitha, J. (2016). Optimum wavelet based masking for the contrast enhancement of medical images using enhanced cuckoo search algorithm. Computers in Biology and Medicine, 71, 149–155.

    Google Scholar 

  20. Mittal, P., Saini, R., & Jain, N. K. (2019). Image enhancement using fuzzy logic techniques. In K. Ray, T. K. Sharma, S. Rawat, R. K. Saini, & A. Bandyopadhyay (Eds.), Soft computing: theories and applications (pp. 537–546). Berlin: Springer.

    Google Scholar 

  21. Celik, T. (2014). Spatial entropy-based global and local image contrast enhancement. IEEE Transactions on Image Processing, 23, 5298–5308.

    MathSciNet  MATH  Google Scholar 

  22. Singh, A., Yadav, S., & Singh, N. (2016). Contrast enhancement and brightness preservation using global-local image enhancement techniques. In 2016 fourth international conference on parallel, distributed and grid computing (PDGC), 2016 (pp. 291–294).

  23. Shukla, K. N., Potnis, A., & Dwivedy, P. (2017). A review on image enhancement techniques. International Journal of Engineering and Applied Computer Science (IJEACS), 2, 232–235.

    Google Scholar 

  24. Huang, D., Wang, Y., Song, W., Sequeira, J., & Mavromatis, S. (2018). Shallow-water image enhancement using relative global histogram stretching based on adaptive parameter acquisition. In: International conference on multimedia modeling, 2018 (pp. 453–465).

  25. Kandhway, P., & Bhandari, A. K. (2019). An optimal adaptive thresholding based sub-histogram equalization for brightness preserving image contrast enhancement. In Multidimensional systems and signal processing (pp. 1–36).

  26. Vidya, M., Krishnan, M., Anirudh, G., Kundeti, S. R., & Vijayananda, J. (2019). Local and global transformations to improve learning of medical images applied to chest radiographs. In Medical imaging 2019: Image processing, 2019 (p. 1094936).

  27. Munteanu, C., & Rosa, A. (2004). Gray-scale image enhancement as an automatic process driven by evolution. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 34, 1292–1298.

    Google Scholar 

  28. Rundo, L., Tangherloni, A., Nobile, M. S., Militello, C., Besozzi, D., Mauri, G., et al. (2019). MedGA: a novel evolutionary method for image enhancement in medical imaging systems. Expert Systems with Applications, 119, 387–399.

    Google Scholar 

  29. Padmavathi, K., Asha, C., & Maya, V. K. (2019). A novel medical image fusion by combining TV-L1 decomposed textures based on adaptive weighting scheme. Engineering Science and Technology, an International Journal, 23, 225–239.

    Google Scholar 

  30. Liu, Y., Yue, C., Zhu, J., Yu, H., Cheng, Y., Yin, Y., et al. (2019). A megavoltage CT image enhancement method for image-guided and adaptive helical TomoTherapy. Frontiers in Oncology, 9, 362.

    Google Scholar 

  31. Fatemeh, D., Loo, C., & Kanagaraj, G. (2019). Shuffled complex evolution based quantum particle swarm optimization algorithm for mechanical design optimization problems. Journal of Modern Manufacturing Systems and Technology, 2, 23–32.

    Google Scholar 

  32. Kaveh, A., & Bakhshpoori, T. (Eds.), (2019). Teaching-learning-based optimization algorithm. In Metaheuristics: Outlines, MATLAB codes and examples (pp. 41–49). Berlin: Springer.

  33. Liu, T., Sun, G., Fang, J., Zhang, J., & Li, Q. (2019). Topographical design of stiffener layout for plates against blast loading using a modified ant colony optimization algorithm. Structural and Multidisciplinary Optimization, 59, 335–350.

    MathSciNet  Google Scholar 

  34. Abedinia, O., Zareinejad, M., Doranehgard, M. H., Fathi, G., & Ghadimi, N. (2019). Optimal offering and bidding strategies of renewable energy based large consumer using a novel hybrid robust-stochastic approach. Journal of Cleaner Production, 215, 878–889.

    Google Scholar 

  35. Saeedi, M., Moradi, M., Hosseini, M., Emamifar, A., & Ghadimi, N. (2019). Robust optimization based optimal chiller loading under cooling demand uncertainty. Applied Thermal Engineering, 148, 1081–1091.

    Google Scholar 

  36. Gao, W., Darvishan, A., Toghani, M., Mohammadi, M., Abedinia, O., & Ghadimi, N. (2019). Different states of multi-block based forecast engine for price and load prediction. International Journal of Electrical Power & Energy Systems, 104, 423–435.

    Google Scholar 

  37. Ghadimi, N., Akbarimajd, A., Shayeghi, H., & Abedinia, O. (2018). Two stage forecast engine with feature selection technique and improved meta-heuristic algorithm for electricity load forecasting. Energy, 161, 130–142.

    Google Scholar 

  38. Bagal, H. A., Soltanabad, Y. N., Dadjuo, M., Wakil, K., & Ghadimi, N. (2018). Risk-assessment of photovoltaic-wind-battery-grid based large industrial consumer using information gap decision theory. Solar Energy, 169, 343–352.

    Google Scholar 

  39. Hosseini, H., Farsadi, M., Lak, A., Ghahramani, H., & Razmjooy, N. (2012). A novel method using imperialist competitive algorithm (ICA) for controlling pitch angle in hybrid wind and PV array energy production system. International Journal on Technical and Physical Problems of Engineering (IJTPE), 11, 145–152.

    Google Scholar 

  40. Mousavi, B. S., Soleymani, F., & Razmjooy, N. (2013). Color image segmentation using neuro-fuzzy system in a novel optimized color space. Neural Computing and Applications, 23, 1513–1520.

    Google Scholar 

  41. Razmjooy, N., Mousavi, B. S., & Soleymani, F. (2013). A hybrid neural network imperialist competitive algorithm for skin color segmentation. Mathematical and Computer Modelling, 57, 848–856.

    Google Scholar 

  42. Razmjooy, N., & Ramezani, M. (2014). An improved quantum evolutionary algorithm based on invasive weed optimization. Indian Journal of Scientific Research, 4, 413–422.

    Google Scholar 

  43. Sajadi, S. M., Alizadeh, A., Zandieh, M., & Tavan, F. (2019). Robust and stable flexible job shop scheduling with random machine breakdowns: multi-objectives genetic algorithm approach. International Journal of Mathematics in Operational Research, 14, 268–289.

    MathSciNet  MATH  Google Scholar 

  44. Mir, M., Shafieezadeh, M., Heidari, M. A., & Ghadimi, N. (2019). Application of hybrid forecast engine based intelligent algorithm and feature selection for wind signal prediction. Evolving Systems. https://doi.org/10.1007/s12530-019-09271-y.

    Article  Google Scholar 

  45. Butt, A. A., Khan, Z. A., Javaid, N., Chand, A., Fatima, A., & Islam, M. T. (2019). Optimization of response and processing time for smart societies using particle swarm optimization and Levy walk. In International conference on advanced information networking and applications, 2019 (pp. 14–25).

  46. Mamizadeh, A., Genc, N., & Rajabioun, R. (2018). Optimal tuning of PI controller for boost DC–DC converters based on cuckoo optimization algorithm. In: 2018 7th international conference on renewable energy research and applications (ICRERA), 2018 (pp. 677–680).

  47. Rao, Y., Shao, Z., Ahangarnejad, A. H., Gholamalizadeh, E., & Sobhani, B. (2019). Shark Smell Optimizer applied to identify the optimal parameters of the proton exchange membrane fuel cell model. Energy Conversion and Management, 182, 1–8.

    Google Scholar 

  48. Abedinia, O., Amjady, N., & Ghadimi, N. (2018). Solar energy forecasting based on hybrid neural network and improved metaheuristic algorithm. Computational Intelligence, 34, 241–260.

    MathSciNet  Google Scholar 

  49. Nurmanova, V., Bagheri, M., Abedinia, O., Sobhani, B., Ghadimi, N., & Moahammad, S. (2018). A synthetic forecast engine for wind power prediction. In 2018 7th international conference on renewable energy research and applications (ICRERA), 2018 (pp. 732–737).

  50. Razmjooy, N., Khalilpour, M., & Ramezani, M. (2016). A new meta-heuristic optimization algorithm inspired by FIFA world cup competitions: Theory and its application in PID designing for AVR system. Journal of Control, Automation and Electrical Systems, 27, 419–440.

    Google Scholar 

  51. Wang, G.-G. (2018). Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Memetic Computing, 10, 151–164.

    Google Scholar 

  52. Heidari, A. A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., & Chen, H. (2019). Harris hawks optimization: algorithm and applications. Future Generation Computer Systems, 97, 849–872.

    Google Scholar 

  53. Farshchin, M., Maniat, M., Camp, C. V., & Pezeshk, S. (2018). School based optimization algorithm for design of steel frames. Engineering Structures, 171, 326–335.

    Google Scholar 

  54. Kaur, G., & Arora, S. (2018). Chaotic whale optimization algorithm. Journal of Computational Design and Engineering, 5, 275–284.

    Google Scholar 

  55. Deng, W., Xu, J., & Zhao, H. (2019). An improved ant colony optimization algorithm based on hybrid strategies for scheduling problem. IEEE Access, 7, 20281–20292.

    Google Scholar 

  56. Kohli, M., & Arora, S. (2018). Chaotic grey wolf optimization algorithm for constrained optimization problems. Journal of Computational Design and Engineering, 5, 458–472.

    Google Scholar 

  57. Yin, X., Cheng, L., Wang, X., Lu, J., & Qin, H. (2019). Optimization for hydro-photovoltaic-wind power generation system based on modified version of multi-objective whale optimization algorithm. Energy Procedia, 158, 6208–6216.

    Google Scholar 

  58. Abedinia, O., Amjady, N., & Ghasemi, A. (2016). A new metaheuristic algorithm based on shark smell optimization. Complexity, 21, 97–116.

    MathSciNet  Google Scholar 

  59. Suri, S., & Vijay, R. (2019). A Bi-objective genetic algorithm optimization of chaos-DNA based hybrid approach. Journal of Intelligent Systems, 28, 333–346.

    Google Scholar 

  60. Zhang, Y., & Zhang, R. (2019). Research on multimedia image classification technology based on chaos optimization machine learning algorithm. Multimedia Tools and Applications. https://doi.org/10.1007/s11042-019-7636-y.

    Article  Google Scholar 

  61. Wei, X., Yuan, S., & Ye, Y. (2019). Optimizing facility layout planning for reconfigurable manufacturing system based on chaos genetic algorithm. Production & Manufacturing Research, 7, 109–124.

    Google Scholar 

  62. Luo, Y., Yu, J., Lai, W., & Liu, L. (2019). A novel chaotic image encryption algorithm based on improved baker map and logistic map. Multimedia Tools and Applications, 78, 22023–22043.

    Google Scholar 

  63. Schymura, C., & Kolossa, D. (2019). Learning dynamic stream weights for linear dynamical systems using natural evolution strategies. In ICASSP 2019-2019 IEEE international conference on acoustics, speech and signal processing (ICASSP), 2019 (pp. 7893–7897).

  64. Xiang, T., Liao, X., & Wong, K.-W. (2007). An improved particle swarm optimization algorithm combined with piecewise linear chaotic map. Applied Mathematics and Computation, 190, 1637–1645.

    MathSciNet  MATH  Google Scholar 

  65. Holland, J. H. (1992). Genetic algorithms. Scientific American, 267, 66–73.

    Google Scholar 

  66. Mirjalili, S. Z., Mirjalili, S., Saremi, S., Faris, H., & Aljarah, I. (2018). Grasshopper optimization algorithm for multi-objective optimization problems. Applied Intelligence, 48, 805–820.

    Google Scholar 

  67. Bansal, J. C. (2019). Particle swarm optimization. In J. C. Bansal, P. K. Singh, & N. R. Pal (Eds.), Evolutionary and swarm intelligence algorithms (pp. 11–23). Berlin: Springer.

    Google Scholar 

  68. Guo, X., Li, Y., & Ling, H. (2017). LIME: low-light image enhancement via illumination map estimation. IEEE Transactions on Image Processing, 26, 982–993.

    MathSciNet  MATH  Google Scholar 

  69. Stark, J. A. (2000). Adaptive image contrast enhancement using generalizations of histogram equalization. IEEE Transactions on Image Processing, 9, 889–896.

    Google Scholar 

  70. Draa, A., & Bouaziz, A. (2014). An artificial bee colony algorithm for image contrast enhancement. Swarm and Evolutionary Computation, 16, 69–84.

    Google Scholar 

  71. Wang, Y., Chen, Q., & Zhang, B. (1999). Image enhancement based on equal area dualistic sub-image histogram equalization method. IEEE Transactions on Consumer Electronics, 45, 68–75.

    Google Scholar 

  72. Talebi, H., & Milanfar, P. (2018). Learned perceptual image enhancement. In: 2018 IEEE international conference on computational photography (ICCP), 2018 (pp. 1–13).

  73. Silva, E. A., Panetta, K., & Agaian, S. S. (2007). Quantifying image similarity using measure of enhancement by entropy. In Mobile multimedia/image processing for military and security applications 2007 (p. 65790U).

  74. Fatermans, J., den Dekker, A., Müller-Caspary, K., Lobato, I., O’Leary, C., Nellist, P., et al. (2018). Single atom detection from low contrast-to-noise ratio electron microscopy images. Physical Review Letters, 121, 056101.

    Google Scholar 

  75. Kumar, S., Pant, M., Kumar, M., & Dutt, A. (2018). Colour image segmentation with histogram and homogeneity histogram difference using evolutionary algorithms. International Journal of Machine Learning and Cybernetics, 9, 163–183.

    Google Scholar 

Download references

Acknowledgements

Natural Science Fund of Hubei Province (2015CFC802), Open Project of Hubei Superior and Distinctive Discipline Group of “Mechatronics and Automobiles” (XKQ2018080) and Research Fund for Doctoral Program of Hubei University of Arts and Science (2013B005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatima Rashid Sheykhahmad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Ye, J., Du, Y. et al. New Improved Optimized Method for Medical Image Enhancement Based on Modified Shark Smell Optimization Algorithm. Sens Imaging 21, 20 (2020). https://doi.org/10.1007/s11220-020-00283-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s11220-020-00283-6

Keywords

Navigation