Skip to main content
Log in

Disk Evolution and the Fate of Water

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

We review the general theoretical concepts and observational constraints on the distribution and evolution of water vapor and ice in protoplanetary disks, with a focus on the Solar System. Water is expected to freeze out at distances greater than 1–3 AU from solar-type central stars; more precise estimates are difficult to obtain due to uncertainties in the complex processes involved in disk evolution, including dust growth, settling, and radial drift, and the level of turbulence and viscous dissipation within disks. Interferometric observations are now providing constraints on the positions of CO snow lines, but extrapolation to the unresolved regions where water ice sublimates will require much better theoretical understanding of mass and angular momentum transport in disks as well as more refined comparison of observations with sophisticated disk models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Ciesla and Cuzzi (2006) used an incorrect form of the equation describing the diffusive redistribution of materials; correction of this term leads to changes in the predicted concentrations of a factor of a few. Estrada et al. (2016) provided a more rigorous treatment of growth and transport and found that the qualitative relationships and behaviors hold true.

References

  • Y. Abe, E. Ohtani, T. Okuchi, K. Righter, M. Drake, in Water in the Early Earth, ed. by R.M. Canup, K. Righter et al.(2000), pp. 413–433

    Google Scholar 

  • R.D. Alexander, C.J. Clarke, J.E. Pringle, Photoevaporation of protoplanetary discs—I. Hydrodynamic models. Mon. Not. R. Astron. Soc. 369, 216–228 (2006)

    Article  ADS  Google Scholar 

  • R. Alexander, I. Pascucci, S. Andrews, P. Armitage, L. Cieza, The dispersal of protoplanetary disks, in Protostars and Planets VI (2014), pp. 475–496

    Google Scholar 

  • S.M. Andrews, J.P. Williams, Circumstellar dust disks in Taurus-Auriga: the submillimeter perspective. Astrophys. J. 631, 1134–1160 (2005)

    Article  ADS  Google Scholar 

  • S.M. Andrews, D.J. Wilner, A.M. Hughes, C. Qi, K.A. Rosenfeld, K.I. Öberg, T. Birnstiel, C. Espaillat, L.A. Cieza, J.P. Williams, S.-Y. Lin, P.T.P. Ho, The TW Hya disk at 870 μm: comparison of CO and dust radial structures. Astrophys. J. 744, 162 (2012)

    Article  ADS  Google Scholar 

  • X.-N. Bai, Magnetorotational-instability-driven accretion in protoplanetary disks. Astrophys. J. 739, 50 (2011)

    Article  ADS  Google Scholar 

  • X.-N. Bai, Wind-driven accretion in protoplanetary disks. II. Radial dependence and global picture. Astrophys. J. 772, 96 (2013)

    Article  ADS  Google Scholar 

  • X.-N. Bai, Hall-effect-controlled gas dynamics in protoplanetary disks. I. Wind solutions at the inner disk. Astrophys. J. 791, 137 (2014)

    Article  ADS  Google Scholar 

  • X.-N. Bai, Hall effect controlled gas dynamics in protoplanetary disks. II. Full 3D simulations toward the outer disk. Astrophys. J. 798, 84 (2015)

    Article  ADS  Google Scholar 

  • X.-N. Bai, J.M. Stone, Wind-driven accretion in protoplanetary disks. I. Suppression of the magnetorotational instability and launching of the magnetocentrifugal wind. Astrophys. J. 769, 76 (2013)

    Article  ADS  Google Scholar 

  • X.-N. Bai, J. Ye, J. Goodman, F. Yuan, Magneto-thermal disk winds from protoplanetary disks. Astrophys. J. 818, 152 (2016)

    Article  ADS  Google Scholar 

  • S.A. Balbus, J.F. Hawley, Instability, turbulence, and enhanced transport in accretion disks. Rev. Mod. Phys. 70, 1–53 (1998)

    Article  ADS  Google Scholar 

  • A. Banzatti, P. Pinilla, L. Ricci, K.M. Pontoppidan, T. Birnstiel, F. Ciesla, Direct imaging of the water snow line at the time of planet formation using two ALMA continuum bands. Astrophys. J. Lett. 815, 15 (2015)

    Article  ADS  Google Scholar 

  • E.A. Bergin, L.I. Cleeves, U. Gorti, K. Zhang, G.A. Blake, J.D. Green, S.M. Andrews, N.J. Evans II, T. Henning, K. Öberg, K. Pontoppidan, C. Qi, C. Salyk, E.F. van Dishoeck, An old disk still capable of forming a planetary system. Nature 493, 644–646 (2013)

    Article  ADS  Google Scholar 

  • E. Bergin, N. Calvet, P. D’Alessio, G.J. Herczeg, The effects of UV continuum and \(\mbox{Ly}{\alpha}\) radiation on the chemical equilibrium of T Tauri disks. Astrophys. J. Lett. 591, 159–162 (2003)

    Article  ADS  Google Scholar 

  • W. Béthune, G. Lesur, J. Ferreira, Self-organization in protoplanetary discs. Global, non-stratified Hall-MHD simulations. Astron. Astrophys. 589, 87 (2016)

    Article  Google Scholar 

  • T. Birnstiel, C.W. Ormel, C.P. Dullemond, Dust size distributions in coagulation/fragmentation equilibrium: numerical solutions and analytical fits. Astron. Astrophys. 525, 11 (2011)

    Article  ADS  Google Scholar 

  • B. Bitsch, A. Johansen, M. Lambrechts, A. Morbidelli, The structure of protoplanetary discs around evolving young stars. Astron. Astrophys. 575, 28 (2015)

    Article  ADS  Google Scholar 

  • R.D. Blandford, D.G. Payne, Hydromagnetic flows from accretion discs and the production of radio jets. Mon. Not. R. Astron. Soc. 199, 883–903 (1982)

    Article  ADS  MATH  Google Scholar 

  • S.M. Blevins, K.M. Pontoppidan, A. Banzatti, K. Zhang, J.R. Najita, J.S. Carr, C. Salyk, G.A. Blake, Measurements of water surface snow lines in classical protoplanetary disks. ArXiv e-prints (2015)

  • S.D. Brittain, J.R. Najita, J.S. Carr, Near infrared high resolution spectroscopy and spectro-astrometry of gas in disks around Herbig Ae/Be stars. Astrophys. Space Sci. 357, 54 (2015)

    Article  ADS  Google Scholar 

  • N. Calvet, P. D’Alessio, L. Hartmann, D. Wilner, A. Walsh, M. Sitko, Evidence for a developing gap in a 10 Myr old protoplanetary disk. Astrophys. J. 568, 1008–1016 (2002)

    Article  ADS  Google Scholar 

  • J.S. Carr, J.R. Najita, Organic molecules and water in the inner disks of T Tauri stars. Astrophys. J. 733, 102 (2011)

    Article  ADS  Google Scholar 

  • E.I. Chiang, P. Goldreich, Spectral energy distributions of T Tauri stars with passive circumstellar disks. Astrophys. J. 490, 368–376 (1997)

    Article  ADS  Google Scholar 

  • F.J. Ciesla, J.N. Cuzzi, The evolution of the water distribution in a viscous protoplanetary disk. Icarus 181, 178–204 (2006)

    Article  ADS  Google Scholar 

  • L.A. Cieza, S. Casassus, J. Tobin, S.P. Bos, J.P. Williams, S. Perez, Z. Zhu, C. Caceres, H. Canovas, M.M. Dunham, A. Hales, J.L. Prieto, D.A. Principe, M.R. Schreiber, D. Ruiz-Rodriguez, A. Zurlo, Imaging the water snow-line during a protostellar outburst. Nature 535, 258–261 (2016). doi:10.1038/nature18612

    Article  ADS  Google Scholar 

  • L.I. Cleeves, F.C. Adams, E.A. Bergin, Exclusion of cosmic rays in protoplanetary disks: stellar and magnetic effects. Astrophys. J. 772, 5 (2013)

    Article  ADS  Google Scholar 

  • L.I. Cleeves, E.A. Bergin, C.M.O. Alexander, F. Du, D. Graninger, K.I. Öberg, T.J. Harries, The ancient heritage of water ice in the solar system. Science 345, 1590–1593 (2014)

    Article  ADS  Google Scholar 

  • J.N. Connelly, M. Bizzarro, A.N. Krot, Å. Nordlund, D. Wielandt, M.A. Ivanova, The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science 338, 651 (2012)

    Article  ADS  Google Scholar 

  • J.N. Cuzzi, K.J. Zahnle, Material enhancement in protoplanetary nebulae by particle drift through evaporation fronts. Astrophys. J. 614, 490–496 (2004)

    Article  ADS  Google Scholar 

  • J.N. Cuzzi, A.R. Dobrovolskis, J.M. Champney, Particle-gas dynamics in the midplane of a protoplanetary nebula. Icarus 106, 102 (1993). doi:10.1006/icar.1993.1161

    Article  ADS  Google Scholar 

  • K.E. Cyr, W.D. Sears, J.I. Lunine, Distribution and evolution of water ice in the solar nebula: implications for solar system body formation. Icarus 135, 537–548 (1998)

    Article  ADS  Google Scholar 

  • K.E. Cyr, C.M. Sharp, J.I. Lunine, Effects of the redistribution of water in the solar nebula on nebular chemistry. J. Geophys. Res. 104, 19003–19014 (1999)

    Article  ADS  Google Scholar 

  • P. D’Alessio, N. Calvet, L. Hartmann, Accretion disks around young objects. III. Grain growth. Astrophys. J. 553, 321–334 (2001)

    Article  ADS  Google Scholar 

  • P. D’Alessio, J. Cantö, N. Calvet, S. Lizano, Accretion disks around young objects. I. The detailed vertical structure. Astrophys. J. 500, 411–427 (1998)

    Article  ADS  Google Scholar 

  • S.J. Desch, Mass distribution and planet formation in the solar nebula. Astrophys. J. 671, 878–893 (2007)

    Article  ADS  Google Scholar 

  • C.P. Dullemond, C. Dominik, Dust coagulation in protoplanetary disks: a rapid depletion of small grains. Astron. Astrophys. 434, 971–986 (2005)

    Article  ADS  MATH  Google Scholar 

  • C. Espaillat, N. Calvet, P. D’Alessio, J. Hernández, C. Qi, L. Hartmann, E. Furlan, D.M. Watson, On the diversity of the Taurus transitional disks: UX Tauri A and LkCa 15. Astrophys. J. Lett. 670, 135–138 (2007)

    Article  ADS  Google Scholar 

  • C. Espaillat, J. Muzerolle, J. Najita, S. Andrews, Z. Zhu, N. Calvet, S. Kraus, J. Hashimoto, A. Kraus, P. D’Alessio, An observational perspective of transitional disks, in Protostars and Planets VI (2014), pp. 497–520

    Google Scholar 

  • P.R. Estrada, J.N. Cuzzi, D.A. Morgan, Global modeling of nebulae with particle growth, drift, and evaporation fronts. I. Methodology and typical results. Astrophys. J. 818, 200 (2016)

    Article  ADS  Google Scholar 

  • D. Fedele, M.E. van den Ancker, T. Henning, R. Jayawardhana, J.M. Oliveira, Timescale of mass accretion in pre-main-sequence stars. Astron. Astrophys. 510, 72 (2010)

    Article  Google Scholar 

  • A.V. Fedkin, L. Grossman, in The Fayalite Content of Chondritic Olivine: Obstacle to Understanding the Condensation of Rocky Material, ed. by D.S. Lauretta, H.Y. McSween (2006), pp. 279–294

    Google Scholar 

  • K.M. Flaherty, A.M. Hughes, K.A. Rosenfeld, S.M. Andrews, E. Chiang, J.B. Simon, S. Kerzner, D.J. Wilner, Weak turbulence in the HD 163296 protoplanetary disk revealed by ALMA CO observations. Astrophys. J. 813, 99 (2015)

    Article  ADS  Google Scholar 

  • S. Fromang, J. Papaloizou, Dust settling in local simulations of turbulent protoplanetary disks. Astron. Astrophys. 452, 751–762 (2006)

    Article  ADS  Google Scholar 

  • S. Fromang, J.M. Stone, Turbulent resistivity driven by the magnetorotational instability. Astron. Astrophys. 507, 19–28 (2009)

    Article  ADS  MATH  Google Scholar 

  • J. Fung, E. Chiang, Save the planet, feed the star: how super-earths survive migration and drive disk accretion. Astrophys. J. 839, 100 (2017). doi:10.3847/1538-4357/aa6934

    Article  ADS  Google Scholar 

  • E. Furlan, L. Hartmann, N. Calvet, P. D’Alessio, R. Franco-Hernández, W.J. Forrest, D.M. Watson, K.I. Uchida, B. Sargent, J.D. Green, L.D. Keller, T.L. Herter, A survey and analysis of spitzer infrared spectrograph spectra of T Tauri stars in Taurus. Astrophys. J. Suppl. Ser. 165, 568–605 (2006)

    Article  ADS  Google Scholar 

  • C.F. Gammie, Layered accretion in T Tauri disks. Astrophys. J. 457, 355 (1996)

    Article  ADS  Google Scholar 

  • P. Garaud, D.N.C. Lin, The effect of internal dissipation and surface irradiation on the structure of disks and the location of the snow line around Sun-like stars. Astrophys. J. 654, 606–624 (2007)

    Article  ADS  Google Scholar 

  • A.E. Glassgold, R. Meijerink, J.R. Najita, Formation of water in the warm atmospheres of protoplanetary disks. Astrophys. J. 701, 142–153 (2009)

    Article  ADS  Google Scholar 

  • U. Gorti, R. Liseau, Z. Sándor, C. Clarke, Disk dispersal: theoretical understanding and observational constraints. Space Sci. Rev. 205(1–4), 125–152 (2016). doi:10.1007/s11214-015-0228-x

    Article  ADS  Google Scholar 

  • O. Gressel, N.J. Turner, R.P. Nelson, C.P. McNally, Global simulations of protoplanetary disks with ohmic resistivity and ambipolar diffusion. Astrophys. J. 801, 84 (2015)

    Article  ADS  Google Scholar 

  • J. Guilet, G.I. Ogilvie, Global evolution of the magnetic field in a thin disc and its consequences for protoplanetary systems. Mon. Not. R. Astron. Soc. 441, 852–868 (2014)

    Article  ADS  Google Scholar 

  • T. Guillot, R. Hueso, The composition of Jupiter: sign of a (relatively) late formation in a chemically evolved protosolar disc. Mon. Not. R. Astron. Soc. 367, 47–51 (2006)

    Article  ADS  Google Scholar 

  • L. Hartmann, S.J. Kenyon, The FU Orionis phenomenon. Annu. Rev. Astron. Astrophys. 34, 207–240 (1996)

    Article  ADS  Google Scholar 

  • L. Hartmann, G. Herczeg, N. Calvet, Accretion onto pre-main-sequence stars. Annu. Rev. Astron. Astrophys. 54, 135–180 (2016). doi:10.1146/annurev-astro-081915-023347

    Article  ADS  Google Scholar 

  • L. Hartmann, K. Hinkle, N. Calvet, High-resolution near-infrared spectroscopy of FU Orionis objects. Astrophys. J. 609, 906–916 (2004)

    Article  ADS  Google Scholar 

  • C. Hayashi, Structure of the solar nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the nebula. Prog. Theor. Phys. Suppl. 70, 35–53 (1981)

    Article  ADS  Google Scholar 

  • J. Hernández, L. Hartmann, N. Calvet, R.D. Jeffries, R. Gutermuth, J. Muzerolle, J. Stauffer, A Spitzer view of protoplanetary disks in the \(\gamma\) Velorum cluster. Astrophys. J. 686, 1195–1208 (2008)

    Article  ADS  Google Scholar 

  • I. Hubeny, Vertical structure of accretion disks—a simplified analytical model. Astrophys. J. 351, 632–641 (1990)

    Article  ADS  Google Scholar 

  • M. Hutson, A. Ruzicka, A multi-step model for the origin of E3 (enstatite) chondrites. Meteorit. Planet. Sci. 35, 601–608 (2000)

    Article  ADS  Google Scholar 

  • L. Ingleby, N. Calvet, E. Bergin, A. Yerasi, C. Espaillat, G. Herczeg, E. Roueff, H. Abgrall, J. Hernández, C. Briceño, I. Pascucci, J. Miller, J. Fogel, L. Hartmann, M. Meyer, J. Carpenter, N. Crockett, M. McClure, Far-ultraviolet \(\mbox{H}_{2}\) emission from circumstellar disks. Astrophys. J. Lett. 703, 137–141 (2009)

    Article  ADS  Google Scholar 

  • L. Ingleby, N. Calvet, J. Hernández, L. Hartmann, C. Briceno, J. Miller, C. Espaillat, M. McClure, The evolution of accretion in young stellar objects: strong accretors at 3–10 Myr. Astrophys. J. 790, 47 (2014)

    Article  ADS  Google Scholar 

  • A. Kalyaan, S.J. Desch, N. Monga, External photoevaporation of the solar nebula. II. Effects on disk structure and evolution with non-uniform turbulent viscosity due to the magnetorotational instability. Astrophys. J. 815, 112 (2015)

    Article  ADS  Google Scholar 

  • G.M. Kennedy, S.J. Kenyon, Planet formation around stars of various masses: the snow line and the frequency of giant planets. Astrophys. J. 673, 502–512 (2008)

    Article  ADS  Google Scholar 

  • S.J. Kenyon, L. Hartmann, Spectral energy distributions of T Tauri stars—disk flaring and limits on accretion. Astrophys. J. 323, 714–733 (1987)

    Article  ADS  Google Scholar 

  • H. Klahr, A. Hubbard, Convective overstability in radially stratified accretion disks under thermal relaxation. Astrophys. J. 788, 21 (2014)

    Article  ADS  Google Scholar 

  • A. Königl, Self-similar models of magnetized accretion disks. Astrophys. J. 342, 208–223 (1989)

    Article  ADS  Google Scholar 

  • S. Krijt, F.J. Ciesla, E.A. Bergin, Tracing water vapor and ice during dust growth. Astrophys. J. 833, 285 (2016)

    Article  ADS  Google Scholar 

  • T.S. Kruijer, M. Touboul, M. Fischer-Gödde, K.R. Bermingham, R.J. Walker, T. Kleine, Protracted core formation and rapid accretion of protoplanets. Science 344, 1150–1154 (2014)

    Article  ADS  Google Scholar 

  • M.W. Kunz, On the linear stability of weakly ionized, magnetized planar shear flows. Mon. Not. R. Astron. Soc. 385, 1494–1510 (2008)

    Article  ADS  Google Scholar 

  • M.W. Kunz, G. Lesur, Magnetic self-organization in Hall-dominated magnetorotational turbulence. Mon. Not. R. Astron. Soc. 434, 2295–2312 (2013)

    Article  ADS  Google Scholar 

  • G. Lesur, M.W. Kunz, S. Fromang, Thanatology in protoplanetary discs. The combined influence of Ohmic, Hall, and ambipolar diffusion on dead zones. Astron. Astrophys. 566, 56 (2014)

    Article  ADS  Google Scholar 

  • G.R.J. Lesur, H. Latter, On the survival of zombie vortices in protoplanetary discs. Mon. Not. R. Astron. Soc. 462, 4549–4554 (2016). doi:10.1093/mnras/stw2172

    Article  ADS  Google Scholar 

  • K. Lodders, Solar system abundances and condensation temperatures of the elements. Astrophys. J. 591, 1220–1247 (2003)

    Article  ADS  Google Scholar 

  • W. Lyra, Convective overstability in accretion disks: three-dimensional linear analysis and nonlinear saturation. Astrophys. J. 789, 77 (2014)

    Article  ADS  Google Scholar 

  • M.G. Malygin, H. Klahr, D. Semenov, T. Henning, C.P. Dullemond, Efficiency of thermal relaxation by radiative processes in protoplanetary discs: constraints on hydrodynamic turbulence. ArXiv e-prints (2017)

  • P.S. Marcus, S. Pei, C.-H. Jiang, J.A. Barranco, P. Hassanzadeh, D. Lecoanet, Zombie vortex instability. I. A purely hydrodynamic instability to resurrect the dead zones of protoplanetary disks. Astrophys. J. 808, 87 (2015). doi:10.1088/0004-637X/808/1/87

    Article  ADS  Google Scholar 

  • M.K. McClure, C. Espaillat, N. Calvet, E. Bergin, P. D’Alessio, D.M. Watson, P. Manoj, B. Sargent, L.I. Cleeves, Detections of trans-Neptunian ice in protoplanetary disks. Astrophys. J. 799, 162 (2015)

    Article  ADS  Google Scholar 

  • J.R. Najita, S.E. Strom, J. Muzerolle, Demographics of transition objects. Mon. Not. R. Astron. Soc. 378, 369–378 (2007)

    Article  ADS  Google Scholar 

  • J.R. Najita, G.W. Doppmann, J.S. Carr, J.R. Graham, J.A. Eisner, High-resolution K-band spectroscopy of MWC 480 and V1331 Cyg. Astrophys. J. 691, 738–748 (2009)

    Article  ADS  Google Scholar 

  • J. Najita, J.S. Carr, A.E. Glassgold, F.H. Shu, A.T. Tokunaga, Kinematic diagnostics of disks around young stars: CO overtone emission from WL 16 and 1548C27. Astrophys. J. 462, 919 (1996)

    Article  ADS  Google Scholar 

  • R.P. Nelson, O. Gressel, O.M. Umurhan, Linear and non-linear evolution of the vertical shear instability in accretion discs. Mon. Not. R. Astron. Soc. 435, 2610–2632 (2013)

    Article  ADS  Google Scholar 

  • W. O’Keeffe, T.P. Downes, Multifluid simulations of the magnetorotational instability in protostellar discs. Mon. Not. R. Astron. Soc. 441, 571–581 (2014)

    Article  ADS  Google Scholar 

  • S. Okuzumi, T. Takeuchi, T. Muto, Radial transport of large-scale magnetic fields in accretion disks. I. Steady solutions and an upper limit on the vertical field strength. Astrophys. J. 785, 127 (2014)

    Article  ADS  Google Scholar 

  • J.E. Owen, B. Ercolano, C.J. Clarke, Protoplanetary disc evolution and dispersal: the implications of X-ray photoevaporation. Mon. Not. R. Astron. Soc. 412, 13–25 (2011)

    Article  ADS  Google Scholar 

  • I. Pascucci, M. Sterzik, Evidence for disk photoevaporation driven by the Central Star. Astrophys. J. 702, 724–732 (2009)

    Article  ADS  Google Scholar 

  • L.M. Pérez, J.M. Carpenter, C.J. Chandler, A. Isella, S.M. Andrews, L. Ricci, N. Calvet, S.A. Corder, A.T. Deller, C.P. Dullemond, J.S. Greaves, R.J. Harris, T. Henning, W. Kwon, J. Lazio, H. Linz, L.G. Mundy, A.I. Sargent, S. Storm, L. Testi, D.J. Wilner, Constraints on the radial variation of grain growth in the AS 209 circumstellar disk. Astrophys. J. Lett. 760, 17 (2012)

    Article  ADS  MATH  Google Scholar 

  • L.M. Pérez, C.J. Chandler, A. Isella, J.M. Carpenter, S.M. Andrews, N. Calvet, S.A. Corder, A.T. Deller, C.P. Dullemond, J.S. Greaves, R.J. Harris, T. Henning, W. Kwon, J. Lazio, H. Linz, L.G. Mundy, L. Ricci, A.I. Sargent, S. Storm, M. Tazzari, L. Testi, D.J. Wilner, Grain growth in the circumstellar disks of the young stars CY Tau and DoAr 25. Astrophys. J. 813, 41 (2015)

    Article  ADS  MATH  Google Scholar 

  • D. Perez-Becker, E. Chiang, Surface layer accretion in conventional and transitional disks driven by far-ultraviolet ionization. Astrophys. J. 735, 8 (2011)

    Article  ADS  Google Scholar 

  • A.-M.A. Piso, K.I. Öberg, T. Birnstiel, R.A. Murray-Clay, C/O and snowline locations in protoplanetary disks: the effect of radial drift and viscous gas accretion. Astrophys. J. 815, 109 (2015)

    Article  ADS  Google Scholar 

  • C. Qi, K.I. Öberg, D.J. Wilner, P. D’Alessio, E. Bergin, S.M. Andrews, G.A. Blake, M.R. Hogerheijde, E.F. van Dishoeck, Imaging of the CO snow line in a solar nebula analog. Science 341, 630–632 (2013)

    Article  ADS  Google Scholar 

  • G.G. Sacco, E. Flaccomio, I. Pascucci, F. Lahuis, B. Ercolano, J.H. Kastner, G. Micela, B. Stelzer, M. Sterzik, High-resolution Spectroscopy of Ne II emission from young stellar objects. Astrophys. J. 747, 142 (2012)

    Article  ADS  Google Scholar 

  • R. Salmeron, M. Wardle, Magnetorotational instability in stratified, weakly ionized accretion discs. Mon. Not. R. Astron. Soc. 345, 992–1008 (2003)

    Article  ADS  Google Scholar 

  • T. Sano, J.M. Stone, The effect of the Hall term on the nonlinear evolution of the magnetorotational instability. II. Saturation level and critical magnetic Reynolds number. Astrophys. J. 577, 534–553 (2002)

    Article  ADS  Google Scholar 

  • J.B. Simon, X.-N. Bai, J.M. Stone, P.J. Armitage, K. Beckwith, Turbulence in the outer regions of protoplanetary disks. I. Weak accretion with no vertical magnetic flux. Astrophys. J. 764, 66 (2013a)

    Article  ADS  Google Scholar 

  • J.B. Simon, X.-N. Bai, P.J. Armitage, J.M. Stone, K. Beckwith, Turbulence in the outer regions of protoplanetary disks. II. Strong accretion driven by a vertical magnetic field. Astrophys. J. 775, 73 (2013b)

    Article  ADS  Google Scholar 

  • J.B. Simon, G. Lesur, M.W. Kunz, P.J. Armitage, Magnetically driven accretion in protoplanetary discs. Mon. Not. R. Astron. Soc. 454, 1117–1131 (2015)

    Article  ADS  Google Scholar 

  • D.R. Soderblom, L.A. Hillenbrand, R.D. Jeffries, E.E. Mamajek, T. Naylor, Ages of young stars, in Protostars and Planets VI (2014), pp. 219–241

    Google Scholar 

  • D.J. Stevenson, J.I. Lunine, Rapid formation of Jupiter by diffuse redistribution of water vapor in the solar nebula. Icarus 75, 146–155 (1988)

    Article  ADS  Google Scholar 

  • M.H.R. Stoll, W. Kley, Particle dynamics in discs with turbulence generated by the vertical shear instability. Astron. Astrophys. 594, 57 (2016). doi:10.1051/0004-6361/201527716

    Article  ADS  Google Scholar 

  • T. Takeuchi, C.J. Clarke, D.N.C. Lin, The differential lifetimes of protostellar gas and dust disks. Astrophys. J. 627, 286–292 (2005)

    Article  ADS  Google Scholar 

  • M. Tazzari, L. Testi, B. Ercolano, A. Natta, A. Isella, C.J. Chandler, L.M. Pérez, S. Andrews, D.J. Wilner, L. Ricci, T. Henning, H. Linz, W. Kwon, S.A. Corder, C.P. Dullemond, J.M. Carpenter, A.I. Sargent, L. Mundy, S. Storm, N. Calvet, J.A. Greaves, J. Lazio, A.T. Deller, A multi-wavelength analysis for interferometric (sub-)mm observations of protoplanetary disks: radial constraints on the dust properties and the disk structure. ArXiv e-prints (2015)

  • N.J. Turner, S. Fromang, C. Gammie, H. Klahr, G. Lesur, M. Wardle, X.-N. Bai, Transport and accretion in planet-forming disks, in Protostars and Planets VI (2014), pp. 411–432

    Google Scholar 

  • N. van der Marel, E.F. van Dishoeck, S. Bruderer, S.M. Andrews, K.M. Pontoppidan, G.J. Herczeg, T. van Kempen, A. Miotello, Resolved gas cavities in transitional disks inferred from CO isotopologs with ALMA. Astron. Astrophys. 585, 58 (2016)

    Article  Google Scholar 

  • K.J. Walsh, A. Morbidelli, S.N. Raymond, D.P. O’Brien, A.M. Mandell, A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475, 206–209 (2011)

    Article  ADS  Google Scholar 

  • M. Wardle, A. Königl, The structure of protostellar accretion disks and the origin of bipolar flows. Astrophys. J. 410, 218–238 (1993)

    Article  ADS  Google Scholar 

  • S.J. Weidenschilling, The distribution of mass in the planetary system and solar nebula. Astrophys. Space Sci. 51, 153–158 (1977)

    Article  ADS  Google Scholar 

  • J.P. Williams, W.M.J. Best, A parametric modeling approach to measuring the gas masses of circumstellar disks. Astrophys. J. 788, 59 (2014)

    Article  ADS  Google Scholar 

  • R. Xu, X.-N. Bai, On the grain-modified magnetic diffusivities in protoplanetary disks. Astrophys. J. 819, 68 (2016)

    Article  ADS  Google Scholar 

  • A.N. Youdin, Y. Lithwick, Particle stirring in turbulent gas disks: including orbital oscillations. Icarus 192, 588–604 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The research of L. Hartmann was supported by the University of Michigan and in part by NASA grant NNX16AB46G. F. Ciesla acknowledges support from NASA’s Exobiology and Outer Planets Research Programs (NNX12AD59G and NNX14AQ17G). O. Gressel has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 638596). R. Alexander has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 681601), and also acknowledges support from the Leverhulme Trust through a Philip Leverhulme Prize.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee Hartmann.

Additional information

The Delivery of Water to Protoplanets, Planets and Satellites

Edited by Michel Blanc, Allessandro Morbidelli, Yann Alibert, Lindy Elkins-Tanton, Paul Estrada, Keiko Hamano, Helmut Lammer, Sean Raymond and Maria Schönbächler

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hartmann, L., Ciesla, F., Gressel, O. et al. Disk Evolution and the Fate of Water. Space Sci Rev 212, 813–834 (2017). https://doi.org/10.1007/s11214-017-0406-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-017-0406-0

Keywords

Navigation