Skip to main content
Log in

Recent Advances on Solar Global Magnetism and Variability

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

We discuss recent observational, theoretical and numerical progress made in understanding the solar global magnetism and its short and long term variability. We discuss the physical process thought to be at the origin of the solar magnetic field and its 22-yr cycle, namely dynamo action, and the nonlinear interplay between convection, rotation, radiation and magnetic field, yielding modulations of the solar constant or of the large scale flows such as the torsional oscillations. We also discuss the role of the field parity and dynamo families in explaining the complex multipolar structure of the solar global magnetic field. We then present some key MHD processes acting in the deep radiative interior and discuss the probable topology of a primordial field there. Finally we summarize how helioseismology has contributed to these recent advances and how it could contribute to resolving current unsolved problems in solar global dynamics and magnetism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • J.A. Abreu, J. Beer, F. Steinhilber, S.M. Tobias, N.O. Weiss, For how long will the current grand maximum of solar activity persist? Geophys. Res. Lett. 35, 20109 (2008). doi:10.1029/2008GL035442

    Article  ADS  Google Scholar 

  • L.A. Acevedo-Arreguin, P. Garaud, T.S. Wood, Dynamics of the solar tachocline—III. Numerical solutions of the Gough and McIntyre model. Mon. Not. R. Astron. Soc. 434, 720–741 (2013). doi:10.1093/mnras/stt1065

    Article  ADS  Google Scholar 

  • D. Acheson, Instability by magnetic buoyancy. Sol. Phys. 62, 23–235050 (1978)

    Article  ADS  Google Scholar 

  • M. Asplund, N. Grevesse, A.J. Sauval, C. Allende Prieto, D. Kiselman, Line formation in solar granulation. IV. [O I], O I and OH lines and the photospheric O abundance. Astron. Astrophys. 417, 751–768 (2004). doi:10.1051/0004-6361:20034328

    Article  ADS  Google Scholar 

  • H.D. Babcock, The Sun’s polar magnetic field. Astrophys. J. 130, 364 (1959). doi:10.1086/146726

    Article  ADS  Google Scholar 

  • H.W. Babcock, The topology of the Sun’s magnetic field and the 22-YEAR cycle. Astrophys. J. 133, 572 (1961). doi:10.1086/147060

    Article  ADS  Google Scholar 

  • W.T. Ball, Y.C. Unruh, N.A. Krivova, S. Solanki, T. Wenzler, D.J. Mortlock, A.H. Jaffe, Reconstruction of total solar irradiance 1974–2009. Astron. Astrophys. 541, 27 (2012). doi:10.1051/0004-6361/201118702

    Article  ADS  Google Scholar 

  • S. Basu, H.M. Antia, Characteristics of solar meridional flows during solar cycle 23. Astrophys. J. 717, 488–495 (2010). doi:10.1088/0004-637X/717/1/488

    Article  ADS  Google Scholar 

  • P. Beaudoin, P. Charbonneau, E. Racine, P.K. Smolarkiewicz, Torsional oscillations in a global solar dynamo. Sol. Phys. 282, 335–360 (2013). doi:10.1007/s11207-012-0150-2

    Article  ADS  Google Scholar 

  • J.G. Beck, T.L. Duvall, P.H. Scherrer, Long-lived giant cells detected at the surface of the Sun. Nature 394, 653–655 (1998). doi:10.1038/29245

    Article  ADS  Google Scholar 

  • J. Beer, S. Tobias, N. Weiss, An active Sun throughout the maunder minimum. Sol. Phys. 181, 237–249 (1998)

    Article  ADS  Google Scholar 

  • B. Belucz, M. Dikpati, Role of asymmetric meridional circulation in producing North–South asymmetry in a solar cycle dynamo model. Astrophys. J. 777, 1–9 (2013). doi:10.1088/0004-637X/777/1

    Article  ADS  Google Scholar 

  • E.E. Benevolenskaya, Polar magnetic flux on the Sun in 1996–2003 from SOHO/MDI data. Astron. Astrophys. 428, 5–8 (2004). doi:10.1051/0004-6361:200400092

    Article  ADS  Google Scholar 

  • S.V. Berdyugina, D. Moss, D. Sokoloff, I.G. Usoskin, Active longitudes, nonaxisymmetric dynamos and phase mixing. Astron. Astrophys. 445, 703–714 (2006). doi:10.1051/0004-6361:20053454

    Article  ADS  Google Scholar 

  • D. Biskamp, Nonlinear magnetohydrodynamics, in Cambridge Monographs on Plasma Physics, Cambridge [England] (Cambridge University Press, New York, 1993)

    Google Scholar 

  • C. Bolduc, P. Charbonneau, V. Dumoulin, M.S. Bourqui, A.D. Crouch, A fast model for the reconstruction of spectral solar irradiance in the near- and mid-ultraviolet. Sol. Phys. 279, 383–409 (2012). doi:10.1007/s11207-012-0019-4

    Article  ADS  Google Scholar 

  • A. Bonanno, V. Urpin, Rotation and stability of the toroidal magnetic field in stellar radiation zones. Astrophys. J. 766, 52 (2013). doi:10.1088/0004-637X/766/1/52

    Article  ADS  Google Scholar 

  • A. Bonanno, D. Elstner, G. Rüdiger, G. Belvedere, Parity properties of an advection-dominated solar α 2 Ω-dynamo. Astron. Astrophys. 390, 673–680 (2002). doi:10.1051/0004-6361:20020590

    Article  ADS  Google Scholar 

  • J. Braithwaite, On non-axisymmetric magnetic equilibria in stars. Mon. Not. R. Astron. Soc. 386, 1947–1958 (2008). doi:10.1111/j.1365-2966.2008.13218.x

    Article  ADS  Google Scholar 

  • J. Braithwaite, Axisymmetric magnetic fields in stars: relative strengths of poloidal and toroidal components. Mon. Not. R. Astron. Soc. 397, 763–774 (2009). doi:10.1111/j.1365-2966.2008.14034.x

    Article  ADS  Google Scholar 

  • J. Braithwaite, Å. Nordlund, Stable magnetic fields in stellar interiors. Astron. Astrophys. 450(3), 1077–1095 (2006)

    Article  ADS  MATH  Google Scholar 

  • J. Braithwaite, H.C. Spruit, A fossil origin for the magnetic field in a stars and white dwarfs. Nature 431, 819–821 (2004). doi:10.1038/nature02934

    Article  ADS  Google Scholar 

  • A. Brandenburg, The case for a distributed solar dynamo shaped by near-surface shear. Astrophys. J. 625, 539–547 (2005). doi:10.1086/429584

    Article  ADS  Google Scholar 

  • A. Brandenburg, D. Moss, I. Tuominen, Stratification and thermodynamics in mean-field dynamos. Astron. Astrophys. 265, 328–344 (1992)

    ADS  Google Scholar 

  • B.P. Brown, Convection and Dynamo Action in Rapidly Rotating Suns, Ph.D. thesis, University of Colorado at Boulder (2009)

  • B.P. Brown, M.K. Browning, A.S. Brun, M.S. Miesch, J. Toomre, Persistent magnetic wreaths in a rapidly rotating Sun. Astrophys. J. 711, 424–438 (2010). doi:10.1088/0004-637X/711/1/424

    Article  ADS  Google Scholar 

  • B.P. Brown, M.S. Miesch, M.K. Browning, A.S. Brun, J. Toomre, Magnetic cycles in a convective dynamo simulation of a Young solar-type star. Astrophys. J. 731, 69 (2011). doi:10.1088/0004-637X/731/1/69

    Article  ADS  Google Scholar 

  • B.P. Brown, M.K. Browning, A.S. Brun, M.S. Miesch, J. Toomre, Persistent magnetic wreaths in a rapidly rotating Sun. Astrophys. J. 711(1), 424–438 (2010)

    Article  ADS  Google Scholar 

  • M.K. Browning, M.S. Miesch, A.S. Brun, J. Toomre, Dynamo action in the solar convection zone and tachocline: pumping and organization of toroidal fields. Astrophys. J. 648, 157–160 (2006). doi:10.1086/507869

    Article  ADS  Google Scholar 

  • M.K. Browning, A.S. Brun, M.S. Miesch, J. Toomre, Dynamo action in simulations of penetrative solar convection with an imposed tachocline. Astron. Nachr. 328, 1100 (2007). doi:10.1002/asna.200710849

    Article  ADS  MATH  Google Scholar 

  • M.K. Browning, M.S. Miesch, A.S. Brun, J. Toomre, Dynamo action in the solar convection zone and tachocline: pumping and organization of toroidal fields. Astrophys. J. 648(2), 157–160 (2006)

    Article  ADS  Google Scholar 

  • A.S. Brun, Towards using modern data assimilation and weather forecasting methods in solar physics. Astron. Nachr. 328, 329 (2007). doi:10.1002/asna.200610739

    Article  ADS  Google Scholar 

  • A.S. Brun, O. Do Cao, Private communication (2013)

  • A.S. Brun, M. Rempel, Large scale flows in the solar convection zone. Space Sci. Rev. 144, 151–173 (2009). doi:10.1007/s11214-008-9454-9

    Article  ADS  Google Scholar 

  • A.S. Brun, M.S. Miesch, J. Toomre, Global-scale turbulent convection and magnetic dynamo action in the solar envelope. Astrophys. J. 614, 1073–1098 (2004a). doi:10.1086/423835

    Article  ADS  Google Scholar 

  • A.S. Brun, M.S. Miesch, J. Toomre, Global-scale turbulent convection and magnetic dynamo action in the solar envelope. Astrophys. J. 614, 1073–1098 (2004b). doi:10.1086/423835

    Article  ADS  Google Scholar 

  • A.S. Brun, Nonlinear simulations of magnetic instabilities in stellar radiation zones: the role of rotation and shear. Astron. Nachr. 328(10), 1137–1141 (2007)

    Article  ADS  MATH  Google Scholar 

  • A.S. Brun, J. Toomre, Turbulent convection under the influence of rotation: sustaining a strong differential rotation. Astrophys. J. 570, 865 (2002)

    Article  ADS  Google Scholar 

  • A.S. Brun, J.-P. Zahn, Magnetic confinement of the solar tachocline. Astron. Astrophys. 457, 665 (2006)

    Article  ADS  Google Scholar 

  • A.S. Brun, M.S. Miesch, J. Toomre, Global-scale turbulent convection and magnetic dynamo action in the solar envelope. Astrophys. J. 614(2), 1073–1098 (2004)

    Article  ADS  Google Scholar 

  • A.S. Brun, M.S. Miesch, J. Toomre, Modeling the dynamical coupling of solar convection with the radiative interior. Astrophys. J. 742(2), 79 (2011)

    Article  ADS  Google Scholar 

  • E. Bullard, H. Gellman, Homogeneous dynamos and terrestrial magnetism. Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 247(9), 213–278 (1954)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • P.J. Bushby, Zonal flows and grand minima in a solar dynamo model. Mon. Not. R. Astron. Soc. 371, 772–780 (2006). doi:10.1111/j.1365-2966.2006.10706.x

    Article  ADS  Google Scholar 

  • R.H. Cameron, M. Schüssler, Are the strengths of solar cycles determined by converging flows towards the activity belts? Astron. Astrophys. 548, 57 (2012). doi:10.1051/0004-6361/201219914

    Article  Google Scholar 

  • F. Cattaneo, On the origin of magnetic fields in the quiet photosphere. Astrophys. J. Lett. 515, 39–42 (1999). doi:10.1086/311962

    Article  ADS  Google Scholar 

  • F. Cattaneo, D.W. Hughes, Problems with kinematic mean field electrodynamics at high magnetic Reynolds numbers. Mon. Not. R. Astron. Soc. 395, 48–51 (2009). doi:10.1111/j.1745-3933.2009.00639.x

    Article  ADS  Google Scholar 

  • P. Charbonneau, Dynamo models of the solar cycle. Living Rev. Sol. Phys. 2, 2 (2005)

    Article  ADS  Google Scholar 

  • P. Charbonneau, Where is the solar dynamo? J. Phys. Conf. Ser. 440(1), 012014 (2013). doi:10.1088/1742-6596/440/1/012014

    Article  ADS  Google Scholar 

  • P. Charbonneau, M. Dikpati, Stochastic fluctuations in a Babcock–Leighton model of the solar cycle. Astrophys. J. 543, 1027–1043 (2000). doi:10.1086/317142

    Article  ADS  Google Scholar 

  • C. Charbonnel, S. Talon, Influence of gravity waves on the internal rotation and Li abundance of solar-type stars. Science 309, 2189–2191 (2005). doi:10.1126/science.1116849

    Article  ADS  Google Scholar 

  • P. Chatterjee, D. Nandy, A.R. Choudhuri, Full-sphere simulations of a circulation-dominated solar dynamo: exploring the parity issue. Astron. Astrophys. 427, 1019–1030 (2004). doi:10.1051/0004-6361:20041199

    Article  ADS  Google Scholar 

  • M.C.M. Cheung, M. Rempel, A.M. Title, M. Schüssler, Simulation of the formation of a solar active region. Astrophys. J. 720, 233–244 (2010). doi:10.1088/0004-637X/720/1/233

    Article  ADS  Google Scholar 

  • A.R. Choudhuri, B.B. Karak, A possible explanation of the Maunder minimum from a flux transport dynamo model. Res. Astron. Astrophys. 9, 953–958 (2009). doi:10.1088/1674-4527/9/9/001

    Article  ADS  Google Scholar 

  • A.R. Choudhuri, P. Chatterjee, J. Jiang, Predicting solar cycle 24 with a solar dynamo model. Phys. Rev. Lett. 98(13), 131103 (2007). doi:10.1103/PhysRevLett.98.131103

    Article  ADS  Google Scholar 

  • A.R. Choudhuri, M. Schüssler, M. Dikpati, The solar dynamo with meridional circulation. Astron. Astrophys. 303, 29 (1995)

    ADS  Google Scholar 

  • F. Clette, L. Lefèvre, Are the sunspots really vanishing? Anomalies in solar cycle 23 and implications for long-term models and proxies. J. Space Weather Space Clim. 2(26), 260000 (2012). doi:10.1051/swsc/2012007

    Google Scholar 

  • E. Covas, D. Moss, R. Tavakol, Dynamo models and differential rotation in late-type rapidly rotating stars. Astron. Astrophys. 429, 657–665 (2005). doi:10.1051/0004-6361:20041741

    Article  ADS  MATH  Google Scholar 

  • T.G. Cowling, in Solar Electrodynamics, ed. by G.P. Kuiper (1953), p. 532

    Google Scholar 

  • R.M. Crutcher, N. Hakobian, T.H. Troland, Testing magnetic star formation theory. Astrophys. J. 692, 844–855 (2009). doi:10.1088/0004-637X/692/1/844

    Article  ADS  Google Scholar 

  • M. Dasi-Espuig, S.K. Solanki, N.A. Krivova, R. Cameron, T. Peñuela, Sunspot group tilt angles and the strength of the solar cycle. Astron. Astrophys. 518, 7 (2010). doi:10.1051/0004-6361/201014301

    Article  ADS  Google Scholar 

  • P. Démoulin, E. Pariat, Modelling and observations of photospheric magnetic helicity. Adv. Space Res. 43, 1013–1031 (2009). doi:10.1016/j.asr.2008.12.004

    Article  ADS  Google Scholar 

  • M.L. DeRosa, A.S. Brun, J.T. Hoeksema, Solar magnetic field reversals and the role of dynamo families. Astrophys. J. 757, 96 (2012). doi:10.1088/0004-637X/757/1/96

    Article  ADS  Google Scholar 

  • M. Dikpati, J.L. Anderson, Evaluating potential for data assimilation in a flux-transport dynamo model by assessing sensitivity and response to meridional flow variation. Astrophys. J. 756, 20 (2012). doi:10.1088/0004-637X/756/1/20

    Article  ADS  Google Scholar 

  • M. Dikpati, P.S. Cally, Analyses of three-dimensional magnetohydrodynamic instability of antisolar latitudinal differential rotation in F, G, and K stars. Astrophys. J. 739, 4 (2011). doi:10.1088/0004-637X/739/1/4

    Article  ADS  Google Scholar 

  • M. Dikpati, P. Charbonneau, A Babcock–Leighton flux transport dynamo with solar-like differential rotation. Astrophys. J. 518, 508–520 (1999). doi:10.1086/307269

    Article  ADS  Google Scholar 

  • M. Dikpati, P.A. Gilman, Flux-transport dynamos with α-effect from global instability of tachocline differential rotation: a solution for magnetic parity selection in the Sun. Astrophys. J. 559, 428–442 (2001). doi:10.1086/322410

    Article  ADS  Google Scholar 

  • M. Dikpati, P.A. Gilman, A Shallow–Water theory for the Sun’s active longitudes. Astrophys. J. Lett. 635, 193–196 (2005). doi:10.1086/499626

    Article  ADS  Google Scholar 

  • M. Dikpati, P.A. Gilman, Simulating and predicting solar cycles using a flux-transport dynamo. Astrophys. J. 649, 498–514 (2006). doi:10.1086/506314

    Article  ADS  Google Scholar 

  • M. Dikpati, G. de Toma, P.A. Gilman, Predicting the strength of solar cycle 24 using a flux-transport dynamo-based tool. Geophys. Res. Lett. 33, 5102 (2006). doi:10.1029/2005GL025221

    Article  ADS  Google Scholar 

  • M. Dikpati, G. de Toma, P.A. Gilman, C.N. Arge, O.R. White, Diagnostics of polar field reversal in solar cycle 23 using a flux transport dynamo model. Astrophys. J. 601, 1136–1151 (2004). doi:10.1086/380508

    Article  ADS  Google Scholar 

  • M. Dikpati, P.A. Gilman, G. de Toma, S.S. Ghosh, Simulating solar cycles in northern and southern hemispheres by assimilating magnetic data into a calibrated flux-transport dynamo. Sol. Phys. 245, 1–17 (2007). doi:10.1007/s11207-007-9016-4

    Article  ADS  Google Scholar 

  • M. Dikpati, P.A. Gilman, G. de Toma, R.K. Ulrich, Impact of changes in the Sun’s conveyor-belt on recent solar cycles. Geophys. Res. Lett. 37, 14107 (2010). doi:10.1029/2010GL044143

    ADS  Google Scholar 

  • M. Dikpati, P.A. Gilman, R.K. Ulrich, Physical origin of differences among various measures of solar meridional circulation. Astrophys. J. 722(1), 774–778 (2010)

    Article  ADS  Google Scholar 

  • M. Dikpati, P.A. Gilman, P.S. Cally, M.S. Miesch, Axisymmetric MHD instabilities in Solar/Stellar tachoclines. Astrophys. J. 692(2), 1421–1431 (2009)

    Article  ADS  Google Scholar 

  • O. Do Cao, A.S. Brun, Effects of turbulent pumping on stellar activity cycles. Astron. Nachr. 332, 907 (2011). doi:10.1002/asna.201111623

    Article  ADS  Google Scholar 

  • V. Domingo, I. Ermolli, P. Fox, C. Fröhlich, M. Haberreiter, N. Krivova, G. Kopp, W. Schmutz, S.K. Solanki, H.C. Spruit, Y. Unruh, A. Vögler, Solar surface magnetism and irradiance on time scales from days to the 11-year cycle. Space Sci. Rev. 145, 337–380 (2009). doi:10.1007/s11214-009-9562-1

    Article  ADS  Google Scholar 

  • S. D’Silva, A.R. Choudhuri, A theoretical model for tilts of bipolar magnetic regions. Astron. Astrophys. 272, 621 (1993)

    ADS  Google Scholar 

  • V. Duez, Numerical simulations of magnetic relaxation in rotating stellar radiation zones. Astron. Nachr. 332(9), 983 (2011)

    Article  ADS  Google Scholar 

  • V. Duez, J. Braithwaite, S. Mathis, On the stability of non-force-free magnetic equilibria in stars. Astrophys. J. Lett. 724(1), 34–38 (2010)

    Article  ADS  Google Scholar 

  • I. Ermolli, K. Matthes, T. Dudok de Wit, N.A. Krivova, K. Tourpali, M. Weber, Y.C. Unruh, L. Gray, U. Langematz, P. Pilewskie, E. Rozanov, W. Schmutz, A. Shapiro, S.K. Solanki, G. Thuillier, T.N. Woods, Recent variability of the solar spectral irradiance and its impact on climate modelling. Atmos. Chem. Phys. Discuss. 12, 24557–24642 (2012). doi:10.5194/acpd-12-24557-2012

    Article  ADS  Google Scholar 

  • V.C.A. Ferraro, The non-uniform rotation of the Sun and its magnetic field. Mon. Not. R. Astron. Soc. 97, 458 (1937)

    Article  ADS  MATH  Google Scholar 

  • J.M. Fontenla, J. Harder, W. Livingston, M. Snow, T. Woods, High-resolution solar spectral irradiance from extreme ultraviolet to far infrared. J. Geophys. Res., Atmos. 116, 20108 (2011). doi:10.1029/2011JD016032

    Article  ADS  Google Scholar 

  • E. Forgács-Dajka, Dynamics of the fast solar tachocline. II. Migrating field. Astron. Astrophys. 413, 1143 (2004)

    Article  ADS  Google Scholar 

  • E. Forgács-Dajka, K. Petrovay, Dynamics of the fast solar tachocline. I. Dipolar field. Astron. Astrophys. 389, 629–640 (2002). doi:10.1051/0004-6361:20020586

    Article  ADS  Google Scholar 

  • P. Foukal, C. Fröhlich, H. Spruit, T.M.L. Wigley, Variations in solar luminosity and their effect on the Earth’s climate. Nature 443, 161–166 (2006). doi:10.1038/nature05072

    Article  ADS  Google Scholar 

  • P. Fox, Solar activity and irradiance variations, in Solar Variability and Its Effects on Climate. Geophysical Monograph 141, ed. by J.M. Pap, P. Fox, C. Frohlich, H.S. Hudson, J. Kuhn, J. McCormack, G. North, W. Sprigg, S.T. Wu Washington DC American Geophysical Union Geophysical Monograph Series, vol. 141, 2004, p. 141

    Chapter  Google Scholar 

  • C. Fröhlich, Observations of irradiance variations. Space Sci. Rev. 94, 15–24 (2000)

    Article  ADS  Google Scholar 

  • C. Fröhlich, Total solar irradiance observations. Surv. Geophys. 33, 453–473 (2012). doi:10.1007/s10712-011-9168-5

    Article  ADS  Google Scholar 

  • C. Fröhlich, J. Lean, The Sun’s total irradiance: cycles, trends and related climate change uncertainties since 1976. Geophys. Res. Lett. 25, 4377–4380 (1998). doi:10.1029/1998GL900157

    Article  ADS  Google Scholar 

  • B. Gallet, F. Pétrélis, From reversing to hemispherical dynamos. Phys. Rev. E 80(3), 035302 (2009)

    Article  ADS  Google Scholar 

  • P. Garaud, Dynamics of the solar tachocline—I. An incompressible study. Mon. Not. R. Astron. Soc. 329, 1 (2002)

    Article  ADS  Google Scholar 

  • P. Garaud, L. Acevedo Arreguin, On the penetration of meridional circulation below the solar convection zone. II. Models with convection zone, the Taylor–Proudman constraint, and applications to other stars. Astrophys. J. 704, 1 (2009)

    Article  ADS  Google Scholar 

  • P. Garaud, N.H. Brummell, On the penetration of meridional circulation below the solar convection zone. Astrophys. J. 674(1), 498–510 (2008)

    Article  ADS  Google Scholar 

  • P. Garaud, J.-D. Garaud, Dynamics of the solar tachocline—II. The stratified case. Mon. Not. R. Astron. Soc. 391, 1239 (2008)

    Article  ADS  Google Scholar 

  • T. Gastine, L. Duarte, J. Wicht, Dipolar versus multipolar dynamos: the influence of the background density stratification. Astron. Astrophys. 546, A19 (2012). doi:10.1051/0004-6361/201219799

    Article  ADS  Google Scholar 

  • M. Gellert, G. Rüdiger, D. Elstner, Helicity generation and α-effect by Tayler instability with z-dependent differential rotation. Astron. Astrophys. 479, 33–36 (2008). doi:10.1051/0004-6361:20077781

    Article  ADS  MATH  Google Scholar 

  • M. Ghizaru, P. Charbonneau, P. Smolarkiewicz, Magnetic cycles in global large-eddy simulations of solar convection. Astrophys. J. Lett. 715(2), 133–137 (2010)

    Article  ADS  Google Scholar 

  • P.M. Giles, T.L. Duvall, P.H. Scherrer, R.S. Bogart, A subsurface flow of material from the Sun’s equator to its poles. Nature 390, 52–54 (1997). doi:10.1038/36294

    Article  ADS  Google Scholar 

  • P.A. Gilman, J. Miller, Dynamically consistent nonlinear dynamos driven by convection in a rotating spherical shell. Astrophys. J. Suppl. Ser. 46, 211–238 (1981). doi:10.1086/190743

    Article  ADS  Google Scholar 

  • P.A. Gilman, Dynamically consistent nonlinear dynamos driven by convection in a rotating spherical shell. II—Dynamos with cycles and strong feedbacks. Astrophys. J. Suppl. Ser. 53, 243 (1983)

    Article  ADS  Google Scholar 

  • P.A. Gilman, P.A. Fox, Joint instability of latitudinal differential rotation and toroidal magnetic fields below the solar convection zone. Astrophys. J. 484, 439 (1997)

    Article  ADS  Google Scholar 

  • L. Gizon, A.C. Birch, H.C. Spruit, Local helioseismology: three-dimensional imaging of the solar interior. Annu. Rev. Astron. Astrophys. 48, 289–338 (2010). doi:10.1146/annurev-astro-082708-101722

    Article  ADS  Google Scholar 

  • L. Gizon, A.C. Birch, Local helioseismology. Living Rev. Sol. Phys. 2, 6 (2005)

    Article  ADS  Google Scholar 

  • G.A. Glatzmaier, Numerical simulations of stellar convective dynamos. II—Field propagation in the convection zone. Astrophys. J. 291, 300 (1985)

    Article  ADS  Google Scholar 

  • A. Goel, A.R. Choudhuri, The hemispheric asymmetry of solar activity during the last century and the solar dynamo. Res. Astron. Astrophys. 9, 115–126 (2009). doi:10.1088/1674-4527/9/1/010

    Article  ADS  Google Scholar 

  • I. González Hernández, R. Howe, R. Komm, F. Hill, Meridional circulation during the extended solar minimum: another component of the torsional oscillation? Astrophys. J. Lett. 713, 16–20 (2010). doi:10.1088/2041-8205/713/1/L16

    Article  ADS  Google Scholar 

  • D.O. Gough, M.E. McIntyre, Inevitability of a magnetic field in the Sun’s radiative interior. Nature 394, 755 (1998)

    Article  ADS  Google Scholar 

  • D. Gubbins, K. Zhang, Symmetry properties of the dynamo equations for palaeomagnetism and geomagnetism. Phys. Earth Planet. Inter. 75(4), 225–241 (1993)

    Article  ADS  Google Scholar 

  • G. Guerrero, E.M. de Gouveia Dal Pino, Turbulent magnetic pumping in a Babcock–Leighton solar dynamo model. Astron. Astrophys. 485, 267–273 (2008). doi:10.1051/0004-6361:200809351

    Article  ADS  Google Scholar 

  • D.A. Haber, B.W. Hindman, J. Toomre, R.S. Bogart, R.M. Larsen, F. Hill, Evolving submerged meridional circulation cells within the upper convection zone revealed by ring-diagram analysis. Astrophys. J. 570, 855–864 (2002). doi:10.1086/339631

    Article  ADS  Google Scholar 

  • J.D. Haigh, A.R. Winning, R. Toumi, J.W. Harder, An influence of solar spectral variations on radiative forcing of climate. Nature 467, 696–699 (2010). doi:10.1038/nature09426

    Article  ADS  Google Scholar 

  • G.E. Hale, S.B. Nicholson, The law of Sun-spot polarity. Astrophys. J. 62, 270 (1925). doi:10.1086/142933

    Article  ADS  Google Scholar 

  • J. Hao, M. Zhang, Hemispheric helicity trend for solar cycle 24. Astrophys. J. Lett. 733, 27 (2011). doi:10.1088/2041-8205/733/2/L27

    Article  ADS  Google Scholar 

  • D.H. Hathaway, Doppler measurements of the Sun’s meridional flow. Astrophys. J. 460, 1027 (1996). doi:10.1086/177029

    Article  ADS  Google Scholar 

  • D.H. Hathaway, Solar cycle forecasting. Space Sci. Rev. 144, 401–412 (2009). doi:10.1007/s11214-008-9430-4

    Article  ADS  Google Scholar 

  • D.H. Hathaway, The solar cycle. Living Rev. Sol. Phys. 7, 1 (2010)

    Article  ADS  Google Scholar 

  • D.H. Hathaway, Supergranules as probes of the Sun’s meridional circulation. Astrophys. J. 760, 84 (2012). doi:10.1088/0004-637X/760/1/84

    Article  ADS  Google Scholar 

  • D.H. Hathaway, L. Rightmire, Variations in the Sun s meridional flow over a solar cycle. Science 327, 1350 (2010). doi:10.1126/science.1181990

    Article  ADS  Google Scholar 

  • G. Hazra, B.B. Karak, A.R. Choudhuri, Is a deep one-cell meridional circulation essential for the flux transport Solar Dynamo? ArXiv e-prints (2013)

  • H. Hotta, T. Yokoyama, Importance of surface turbulent diffusivity in the solar flux-transport dynamo. Astrophys. J. 709, 1009–1017 (2010a). doi:10.1088/0004-637X/709/2/1009

    Article  ADS  Google Scholar 

  • H. Hotta, T. Yokoyama, Solar parity issue with flux-transport dynamo. Astrophys. J. 714, 308–312 (2010b). doi:10.1088/2041-8205/714/2/L308

    Article  ADS  Google Scholar 

  • R. Howard, B.J. Labonte, The Sun is observed to be a torsional oscillator with a period of 11 years. Astrophys. J. Lett. 239, 33–36 (1980). doi:10.1086/183286

    Article  ADS  Google Scholar 

  • R. Howe, Solar interior rotation and its variation. Living Rev. Sol. Phys. 6, 1 (2009)

    Article  ADS  Google Scholar 

  • R. Howe, R. Komm, F. Hill, R. Ulrich, D.A. Haber, B.W. Hindman, J. Schou, M.J. Thompson, Large-scale zonal flows near the solar surface. Sol. Phys. 235, 1–15 (2006). doi:10.1007/s11207-006-0117-2

    Article  ADS  Google Scholar 

  • R. Howe, J. Christensen-Dalsgaard, F. Hill, R. Komm, J. Schou, M.J. Thompson, A note on the torsional oscillation at solar minimum. Astrophys. J. Lett. 701, 87–90 (2009). doi:10.1088/0004-637X/701/2/L87

    Article  ADS  Google Scholar 

  • R. Howe, J. Christensen-Dalsgaard, F. Hill, R. Komm, T.P. Larson, M. Rempel, J. Schou, M.J. Thompson, The high-latitude branch of the solar torsional oscillation in the rising phase of cycle 24. Astrophys. J. Lett. 767, 20 (2013). doi:10.1088/2041-8205/767/1/L20

    Article  ADS  Google Scholar 

  • D.W. Hughes, M.R.E. Proctor, The effect of velocity shear on dynamo action due to rotating convection. J. Fluid Mech. 717, 395–416 (2013). doi:10.1017/jfm.2012.584

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • D.W. Hughes, M.R.E. Proctor, F. Cattaneo, The α-effect in rotating convection: a comparison of numerical simulations. Mon. Not. R. Astron. Soc. 414, 45–49 (2011). doi:10.1111/j.1745-3933.2011.01053.x

    Article  ADS  Google Scholar 

  • S. Ilonidis, J. Zhao, A. Kosovichev, Detection of emerging sunspot regions in the solar interior. Science 333, 993 (2011). doi:10.1126/science.1206253

    Article  ADS  Google Scholar 

  • J. Jiang, E. Işik, R.H. Cameron, D. Schmitt, M. Schüssler, The effect of activity-related meridional flow modulation on the strength of the solar polar magnetic field. Astrophys. J. 717, 597–602 (2010). doi:10.1088/0004-637X/717/1/597

    Article  ADS  Google Scholar 

  • M. Joos, P. Hennebelle, A. Ciardi, Protostellar disk formation and transport of angular momentum during magnetized core collapse. Astron. Astrophys. 543, 128 (2012). doi:10.1051/0004-6361/201118730

    Article  ADS  Google Scholar 

  • L. Jouve, A.S. Brun, G. Aulanier, Global dynamics of subsurface solar active regions. Astrophys. J. 762, 4 (2013). doi:10.1088/0004-637X/762/1/4

    Article  ADS  Google Scholar 

  • L. Jouve, A.S. Brun, R. Arlt, A. Brandenburg, M. Dikpati, A. Bonanno, P.J. Käpylä, D. Moss, M. Rempel, P. Gilman, M.J. Korpi, A.G. Kosovichev, A solar mean field dynamo benchmark. Astron. Astrophys. 483, 949–960 (2008). doi:10.1051/0004-6361:20078351

    Article  ADS  Google Scholar 

  • L. Jouve, A.S. Brun, On the role of meridional flows in flux transport dynamo models. Astron. Astrophys. 474(1), 239–250 (2007)

    Article  ADS  Google Scholar 

  • L. Jouve, A.S. Brun, Three-dimensional nonlinear evolution of a magnetic flux tube in a spherical shell: influence of turbulent convection and associated mean flows. Astrophys. J. 701(2), 1300–1322 (2009)

    Article  ADS  Google Scholar 

  • L. Jouve, A.S. Brun, O. Talagrand, Assimilating data into an αΩ dynamo model of the Sun: a variational approach. Astrophys. J. 735(1), 31 (2011)

    Article  ADS  Google Scholar 

  • P.J. Käpylä, M.J. Mantere, A. Brandenburg, Cyclic magnetic activity due to turbulent convection in spherical wedge geometry. Astrophys. J. Lett. 755, 22 (2012). doi:10.1088/2041-8205/755/1/L22

    Article  ADS  Google Scholar 

  • P.J. Käpylä, M.J. Korpi, A. Brandenburg, D. Mitra, R. Tavakol, Convective dynamos in spherical wedge geometry. Astron. Nachr. 331, 73 (2010). doi:10.1002/asna.200911252

    Article  ADS  MATH  Google Scholar 

  • P.J. Käpylä, M.J. Mantere, A. Brandenburg, Cyclic magnetic activity due to turbulent convection in spherical wedge geometry. Astrophys. J. 755(1), 22 (2012)

    Article  Google Scholar 

  • P.J. Käpylä, M.J. Mantere, E. Cole, J. Warnecke, A. Brandenburg, Effects of strong stratification on equatorward dynamo wave propagation. Astrophys. J. 778, 41 (2013). doi:10.1088/0004-637X/778/1/41

    Article  ADS  Google Scholar 

  • B.B. Karak, Importance of meridional circulation in flux transport dynamo: the possibility of a maunder-like grand minimum. Astrophys. J. 724, 1021–1029 (2010). doi:10.1088/0004-637X/724/2/1021

    Article  ADS  Google Scholar 

  • B.B. Karak, A.R. Choudhuri, Quenching of meridional circulation in flux transport dynamo models. Sol. Phys. 278, 137–148 (2012). doi:10.1007/s11207-012-0142-2

    Article  ADS  Google Scholar 

  • B.B. Karak, K. Petrovay, On the Compatibility of a Flux Transport Dynamo with a Fast Tachocline Scenario. Sol. Phys. (2012)

  • R. Komm, R. Howe, F. Hill, A search for coherent structures in subsurface flows. J. Phys. Conf. Ser. 271(1), 012065 (2011). doi:10.1088/1742-6596/271/1/012065

    Article  ADS  Google Scholar 

  • R. Komm, I. González Hernández, F. Hill, R. Bogart, M.C. Rabello-Soares, D. Haber, Subsurface meridional flow from HMI using the ring-diagram pipeline. Sol. Phys. (2012). doi:10.1007/s11207-012-0073-y

    Google Scholar 

  • G. Kopp, J.L. Lean, A new, lower value of total solar irradiance: evidence and climate significance. Geophys. Res. Lett. 38, 1706 (2011). doi:10.1029/2010GL045777

    Article  ADS  Google Scholar 

  • A.G. Kosovichev, J.O. Stenflo, Tilt of emerging bipolar magnetic regions on the Sun. Astrophys. J. Lett. 688, 115–118 (2008). doi:10.1086/595619

    Article  ADS  Google Scholar 

  • N.A. Krivova, L. Balmaceda, S.K. Solanki, Reconstruction of solar total irradiance since 1700 from the surface magnetic flux. Astron. Astrophys. 467, 335–346 (2007). doi:10.1051/0004-6361:20066725

    Article  ADS  Google Scholar 

  • R.L. Kurucz, Atomic data for interpreting stellar spectra: isotopic and hyperfine data. Phys. Scr. T 47, 110–117 (1993). doi:10.1088/0031-8949/1993/T47/017

    Article  ADS  Google Scholar 

  • B.J. Labonte, R. Howard, Torsional waves on the Sun and the activity cycle. Sol. Phys. 75, 161–178 (1982). doi:10.1007/BF00153469

    Article  ADS  Google Scholar 

  • J. Lean, The Sun’s variable radiation and its relevance for Earth. Annu. Rev. Astron. Astrophys. 35, 33–67 (1997). doi:10.1146/annurev.astro.35.1.33

    Article  ADS  Google Scholar 

  • R.B. Leighton, A Magneto–Kinematic model of the solar cycle. Astrophys. J. 156, 1 (1969). doi:10.1086/149943

    Article  ADS  Google Scholar 

  • R. Leonhardt, K. Fabian, Paleomagnetic reconstruction of the global geomagnetic field evolution during the Matuyama/Brunhes transition: iterative Bayesian inversion and independent verification. Earth Planet. Sci. Lett. 253, 172–195 (2007). doi:10.1016/j.epsl.2006.10.025

    Article  ADS  Google Scholar 

  • M. Lesieur, Turbulence in Fluids, Series: Fluid Mechanics and Its Applications. Berlin: Springer, 2008

  • J. Li, R.K. Ulrich, Long-term measurements of sunspot magnetic tilt angles. Astrophys. J. 758, 115 (2012). doi:10.1088/0004-637X/758/2/115

    Article  ADS  Google Scholar 

  • P.W. Livermore, D.W. Hughes, S.M. Tobias, Nonlinear generation of large-scale magnetic fields in forced spherical shell dynamos. PoF 22(3), 7101 (2010)

    MATH  Google Scholar 

  • M. Lockwood, Solar influence on global and regional climates. Surv. Geophys. 33, 503–534 (2012). doi:10.1007/s10712-012-9181-3

    Article  ADS  Google Scholar 

  • W.V.R. Malkus, M.R.E. Proctor, The macrodynamics of alpha-effect dynamos in rotating fluids. J. Fluid Mech. 67, 417–443 (1975). doi:10.1017/S0022112075000390

    Article  ADS  MATH  Google Scholar 

  • P. Markey, R.J. Tayler, The adiabatic stability of stars containing magneticfields-II. Poloidal fields. Mon. Not. R. Astron. Soc. 163, 77 (1973)

    Article  ADS  Google Scholar 

  • J. Mason, D.W. Hughes, S.M. Tobias, The effects of flux transport on interface dynamos. Mon. Not. R. Astron. Soc. 391(1), 467–480 (2008)

    Article  ADS  Google Scholar 

  • E.W. Maunder, Note on the distribution of Sun-spots in heliographic latitude, 1874–1902. Mon. Not. R. Astron. Soc. 64, 747–761 (1904)

    Article  ADS  Google Scholar 

  • B.H. McClintock, A.A. Norton, Recovering Joy’s law as a function of solar cycle, hemisphere, and longitude. Sol. Phys. 287, 215–227 (2013). doi:10.1007/s11207-013-0338-0

    Article  ADS  Google Scholar 

  • P.L. McFadden, R.T. Merrill, M.W. McElhinny, S. Lee, Reversals of the Earth’s magnetic field and temporal variations of the dynamo families. J. Geophys. Res. 96, 3923–3933 (1991). doi:10.1029/90JB02275

    Article  ADS  Google Scholar 

  • M.S. Miesch, B.P. Brown, Convective Babcock–Leighton dynamo models. Astrophys. J. 746, 26 (2012). doi:10.1088/2041-8205/746/2/L26

    Article  ADS  Google Scholar 

  • M.S. Miesch, A.S. Brun, J. Toomre, Solar differential rotation influenced by latitudinal entropy variations in the tachocline. Astrophys. J. 641, 618–625 (2006). doi:10.1086/499621

    Article  ADS  Google Scholar 

  • P.D. Mininni, A. Alexakis, A. Pouquet, Shell-to-shell energy transfer in magnetohydrodynamics. II. Kinematic dynamo. Phys. Rev. E 72(4), 46302 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  • U. Mitra-Kraev, M.J. Thompson, Meridional flow profile measurements with SOHO/MDI. Astron. Nachr. 328, 1009–1012 (2007). doi:10.1002/asna.200710873

    Article  ADS  MATH  Google Scholar 

  • H. Miyahara, K. Masuda, Y. Muraki, H. Furuzawa, H. Menjo, T. Nakamura, Cyclicity of solar activity during the maunder minimum deduced from radiocarbon content. Sol. Phys. 224, 317–322 (2004). doi:10.1007/s11207-005-6501-5

    Article  ADS  Google Scholar 

  • H.K. Moffatt, Magnetic Field Generation in Electrically Conducting Fluids (Cambridge University Press, Cambridge, 1978)

    Google Scholar 

  • F. Moreno-Insertis, Rise times of horizontal magnetic flux tubes in the convection zone of the Sun. Astron. Astrophys. 122, 241–250 (1983)

    ADS  Google Scholar 

  • D. Moss, The survival of fossil magnetic fields during pre-main sequence evolution. Astron. Astrophys. 403, 693–697 (2003). doi:10.1051/0004-6361:20030431

    Article  ADS  Google Scholar 

  • D. Moss, J. Brooke, Towards a model for the solar dynamo. Mon. Not. R. Astron. Soc. 315, 521–533 (2000). doi:10.1046/j.1365-8711.2000.03452.x

    Article  ADS  Google Scholar 

  • T. Nakano, R. Nishi, T. Umebayashi, Mechanism of magnetic flux loss in molecular clouds. Astrophys. J. 573, 199–214 (2002). doi:10.1086/340587

    Article  ADS  Google Scholar 

  • D. Nandy, A. Muñoz-Jaramillo, P.C.H. Martens, The unusual minimum of sunspot cycle 23 caused by meridional plasma flow variations. Nature 471, 80–82 (2011). doi:10.1038/nature09786

    Article  ADS  Google Scholar 

  • N.J. Nelson, B.P. Brown, A. Sacha Brun, M.S. Miesch, J. Toomre, Buoyant magnetic loops generated by global convective dynamo action. Sol. Phys. (2013a). doi:10.1007/s11207-012-0221-4

    Google Scholar 

  • N.J. Nelson, B.P. Brown, A.S. Brun, M.S. Miesch, J. Toomre, Magnetic wreaths and cycles in convective dynamos. Astrophys. J. 762, 73 (2013b)

    Article  ADS  Google Scholar 

  • M. Ossendrijver, The solar dynamo. Astron. Astrophys. Rev. 11, 287–367 (2003). doi:10.1007/s00159-003-0019-3

    Article  ADS  Google Scholar 

  • P. Padoan, T. Lunttila, M. Juvela, Å. Nordlund, D. Collins, A. Kritsuk, M. Normal, S. Ustyugov, Magnetic fields in molecular clouds, in IAU Symposium, ed. by N.H. Brummell, A.S. Brun, M.S. Miesch, Y. Ponty IAU Symposium, vol. 271, 2011, pp. 187–196. doi:10.1017/S1743921311017601

    Google Scholar 

  • F. Palla, S.W. Stahler, The pre-main-sequence evolution of intermediate-mass stars. Astrophys. J. 418, 414 (1993). doi:10.1086/173402

    Article  ADS  Google Scholar 

  • M.A. Palmer, L.J. Gray, M.R. Allen, W.A. Norton, Solar forcing of climate: model results. Adv. Space Res. 34, 343–348 (2004). doi:10.1016/j.asr.2003.02.039

    Article  ADS  Google Scholar 

  • J.M. Pap, Total solar and spectral irradiance variations from near-uv to infrared, in The Sun’s Surface and Subsurface: Investigating Shape, ed. by J.-P. Rozelot Lecture Notes in Physics, Berlin Springer Verlag, vol. 599, 2003, pp. 129–155

    Chapter  Google Scholar 

  • J.M. Pap, P.A. Fox, Solar variability and its effects on climate. Washington DC American Geophysical Union Geophysical Monograph Series 141 (2003)

  • E.N. Parker, A solar dynamo surface wave at the interface between convection and nonuniform rotation. Astrophys. J. 408, 707–719 (1993). doi:10.1086/172631

    Article  ADS  Google Scholar 

  • F. Pétrélis, S. Fauve, E. Dormy, J.-P. Valet, Simple mechanism for reversals of Earth’s magnetic field. Phys. Rev. Lett. 102(1), 144503 (2009)

    Article  ADS  Google Scholar 

  • K. Petrovay, Solar cycle prediction. Living Rev. Sol. Phys. 7, 6 (2010). doi:10.12942/lrsp-2010-6

    Article  ADS  Google Scholar 

  • K. Petrovay, U.R. Christensen, The magnetic Sun: reversals and long-term variations. Space Sci. Rev. 155, 371–385 (2010). doi:10.1007/s11214-010-9657-8

    Article  ADS  Google Scholar 

  • K. Petrovay, E. Forgács-dajka, The role of active regions in the generation of torsional oscillations. Sol. Phys. 205, 39–52 (2002). doi:10.1023/A:1013833709489

    Article  ADS  Google Scholar 

  • A.A. Pevtsov, R.C. Canfield, S.M. Latushko, Hemispheric helicity trend for solar cycle 23. Astrophys. J. Lett. 549, 261–263 (2001). doi:10.1086/319179

    Article  ADS  Google Scholar 

  • A.A. Pevtsov, G.H. Fisher, L.W. Acton, D.W. Longcope, C.M. Johns-Krull, C.C. Kankelborg, T.R. Metcalf, The relationship between X-ray radiance and magnetic flux. Astrophys. J. 598, 1387–1391 (2003). doi:10.1086/378944

    Article  ADS  Google Scholar 

  • J.H. Piddington, Theory of the solar 22-year cycle. Proc. Astron. Soc. Aust. 2, 7 (1971)

    ADS  Google Scholar 

  • R.F. Pinto, A.S. Brun, Flux emergence in a magnetized convection zone. Astrophys. J. 772, 55 (2013). doi:10.1088/0004-637X/772/1/55

    Article  ADS  Google Scholar 

  • R.F. Pinto, A.S. Brun, L. Jouve, R. Grappin, Coupling the solar dynamo and the corona: wind properties, mass, and momentum losses during an activity cycle. Astrophys. J. 737(2), 72 (2011)

    Article  ADS  Google Scholar 

  • E. Pitts, R.J. Tayler, The adiabatic stability of stars containing magnetic fields. IV—The influence of rotation. Mon. Not. R. Astron. Soc. 216, 139–154 (1985)

    Article  ADS  Google Scholar 

  • É. Racine, P. Charbonneau, M. Ghizaru, A. Bouchat, P.K. Smolarkiewicz, On the mode of dynamo action in a global large-eddy simulation of solar convection. Astrophys. J. 735, 46 (2011). doi:10.1088/0004-637X/735/1/46

    Article  ADS  Google Scholar 

  • M. Rempel, Flux-transport dynamos with Lorentz force feedback on differential rotation and meridional flow: saturation mechanism and torsional oscillations. Astrophys. J. 647, 662–675 (2006). doi:10.1086/505170

    Article  ADS  Google Scholar 

  • M. Rempel, M. Schüssler, M. Knölker, Radiative magnetohydrodynamic simulation of sunspot structure. Astrophys. J. 691, 640–649 (2009). doi:10.1088/0004-637X/691/1/640

    Article  ADS  Google Scholar 

  • L. Rightmire-Upton, D.H. Hathaway, K. Kosak, Measurements of the Sun’s high-latitude meridional circulation. Astrophys. J. 761, 14 (2012). doi:10.1088/2041-8205/761/1/L14

    Article  ADS  Google Scholar 

  • T.M. Rogers, On limiting the thickness of the solar tachocline. Astrophys. J. 733(1), 12 (2011)

    Article  ADS  Google Scholar 

  • G. Rüdiger, L.L. Kitchatinov, D. Elstner, Helicity and dynamo action in magnetized stellar radiation zones. Mon. Not. R. Astron. Soc. 425, 2267–2276 (2012). doi:10.1111/j.1365-2966.2012.21569.x

    Article  ADS  Google Scholar 

  • G. Rüdiger, L.L. Kitchatinov, The slender solar tachocline: a magnetic model. Astron. Nachr. 318, 273 (1997)

    Article  ADS  MATH  Google Scholar 

  • G. Rüdiger, L.L. Kitchatinov, Structure and stability of the magnetic solar tachocline. New J. Phys. 9, 302 (2007)

    Article  MATH  Google Scholar 

  • W. Schmutz, A. Fehlmann, W. Finsterle, the PREMOS team, First Light of PREMOS/PICARD, Annual Report 2011, Physikalisch-Meteorologisches Observatorium, World Radiation Center, Davos, Switzerland 44 pp., 24574, 24575, 24576, 24608 (2012). http://www.pmodwrc.ch/annualreport/annualreport2011.pdf,

  • J. Schou, H.M. Antia, S. Basu, R.S. Bogart, R.I. Bush, S.M. Chitre, J. Christensen-Dalsgaard, M.P. di Mauro, W.A. Dziembowski, A. Eff-Darwich, D.O. Gough, D.A. Haber, J.T. Hoeksema, R. Howe, S.G. Korzennik, A.G. Kosovichev, R.M. Larsen, F.P. Pijpers, P.H. Scherrer, T. Sekii, T.D. Tarbell, A.M. Title, M.J. Thompson, J. Toomre, Helioseismic studies of differential rotation in the solar envelope by the solar oscillations investigation using the Michelson Doppler imager. Astrophys. J. 505, 390 (1998)

    Article  ADS  Google Scholar 

  • C.J. Schrijver, A.M. Title, On the formation of polar spots in Sun-like stars. Astrophys. J. 551, 1099–1106 (2001). doi:10.1086/320237

    Article  ADS  Google Scholar 

  • H. Schunker, L. Gizon, R.H. Cameron, A.C. Birch, Helioseismology of sunspots: how sensitive are travel times to the Wilson depression and to the subsurface magnetic field? Astron. Astrophys. (2013)

  • M. Schüssler, The formation of sunspots and starspots. Astron. Nachr. 323, 377–382 (2002). doi:10.1002/1521-3994(200208)323:3/4<377::AID-ASNA377>3.0.CO;2-A

    Article  ADS  Google Scholar 

  • M. Schussler, P. Caligari, A. Ferriz-Mas, F. Moreno-Insertis, Instability and eruption of magnetic flux tubes in the solar convection zone. Astron. Astrophys. 281, 69–72 (1994)

    ADS  Google Scholar 

  • D. Shiota, S. Tsuneta, M. Shimojo, N. Sako, D. Orozco Suárez, R. Ishikawa, Polar field reversal observations with hinode. Astrophys. J. 753, 157 (2012). doi:10.1088/0004-637X/753/2/157

    Article  ADS  Google Scholar 

  • F.H. Shu, F.C. Adams, S. Lizano, Star formation in molecular clouds—observation and theory. Annu. Rev. Astron. Astrophys. 25, 23–81 (1987). doi:10.1146/annurev.aa.25.090187.000323

    Article  ADS  Google Scholar 

  • D. Sokoloff, E. Nesme-Ribes, The Maunder minimum: a mixed-parity dynamo mode? Astron. Astrophys. 288, 293–298 (1994)

    ADS  Google Scholar 

  • S.K. Solanki, B. Inhester, M. Schüssler, The solar magnetic field. Rep. Prog. Phys. 69, 563–668 (2006). doi:10.1088/0034-4885/69/3/R02

    Article  ADS  Google Scholar 

  • E.A. Spiegel, N.O. Weiss, Magnetic activity and variations in solar luminosity. Nature 287, 616 (1980)

    Article  ADS  Google Scholar 

  • E.A. Spiegel, J.-P. Zahn, The solar tachocline. Astron. Astrophys. 265, 106 (1992)

    ADS  Google Scholar 

  • H.C. Spruit, Differential rotation and magnetic fields in stellar interiors. Astron. Astrophys. 349, 189–202 (1999)

    ADS  Google Scholar 

  • H. Spruit, Theory of solar irradiance variations. Space Sci. Rev. 94, 113–126 (2000)

    Article  ADS  Google Scholar 

  • H. Spruit, Theories of the solar cycle and its effect on climate. Prog. Theor. Phys. Suppl. 195, 185–200 (2012)

    Article  ADS  Google Scholar 

  • H.C. Spruit, Dynamo action by differential rotation in a stably stratified stellar interior. Astron. Astrophys. 381, 923–932 (2002). doi:10.1051/0004-6361:20011465

    Article  ADS  Google Scholar 

  • H.C. Spruit, Origin of the torsional oscillation pattern of solar rotation. Sol. Phys. 213, 1–21 (2003)

    Article  ADS  Google Scholar 

  • H.C. Spruit, in Theories of the Solar Cycle: a Critical View, ed. by M.P. Miralles, 2011, p. 39. J. Sánchez Almeida

    Google Scholar 

  • M. Steenbeck, F. Krause, K.-H. Rädler, Berechnung der mittleren LORENTZ-feldstärke ???? X ???? Für ein elektrisch leitendes medium in turbulenter, durch CORIOLIS-kräfte beeinflußter bewegung. Z. Naturforsch. Teil A, Phys. Phys. Chem. Kosmophys. 21, 369 (1966)

    ADS  Google Scholar 

  • R.F. Stein, A. Nordlund, Simulations of solar granulation. I. General properties. Astrophys. J. 499, 914 (1998). doi:10.1086/305678

    Article  ADS  Google Scholar 

  • R.F. Stein, Å. Nordlund, Solar small-scale magnetoconvection. Astrophys. J. 642, 1246–1255 (2006). doi:10.1086/501445

    Article  ADS  Google Scholar 

  • A. Strugarek, A.S. Brun, J.-P. Zahn, Magnetic confinement of the solar tachocline: II. Coupling to a convection zone. Astron. Astrophys. 532, 34 (2011a)

    Article  ADS  Google Scholar 

  • A. Strugarek, A.S. Brun, J.-P. Zahn, Magnetic confinement of the solar tachocline: the oblique dipole. Astron. Nachr. 332(9), 891 (2011b)

    Article  ADS  Google Scholar 

  • A. Strugarek, A.S. Brun, S. Mathis, Y. Sarazin, Magnetic energy cascade in spherical geometry. I. The stellar convective dynamo case. Astrophys. J. 764, 189 (2013). doi:10.1088/0004-637X/764/2/189

    Article  ADS  Google Scholar 

  • A. Sule, G. Rüdiger, R. Arlt, A numerical MHD model for the solar tachocline with meridional flow. Astron. Astrophys. 437(3), 1061–1067 (2005)

    Article  ADS  Google Scholar 

  • R.J. Tayler, The adiabatic stability of stars containing magnetic fields-I. Toroidal fields. Mon. Not. R. Astron. Soc. 161, 365 (1973)

    Article  ADS  Google Scholar 

  • M.J. Thompson, J. Christensen-Dalsgaard, M.S. Miesch, J. Toomre, The internal rotation of the Sun. Annu. Rev. Astron. Astrophys. 41, 599–643 (2003). doi:10.1146/annurev.astro.41.011802.094848

    Article  ADS  Google Scholar 

  • M.J. Thompson, J. Christensen-Dalsgaard, M.S. Miesch, J. Toomre, The internal rotation of the Sun. Annu. Rev. Astron. Astrophys. 41, 599 (2003)

    Article  ADS  Google Scholar 

  • G. Thuillier, M. Deland, A. Shapiro, W. Schmutz, D. Bolsée, S.M.L. Melo, The solar spectral irradiance as a function of the Mg ii index for atmosphere and climate modelling. Sol. Phys. 277, 245–266 (2012). doi:10.1007/s11207-011-9912-5

    Article  ADS  Google Scholar 

  • S.M. Tobias, The solar cycle: parity interactions and amplitude modulation. Astron. Astrophys. 322, 1007–1017 (1997)

    ADS  Google Scholar 

  • S.M. Tobias, Modulation of solar and stellar dynamos. Astron. Nachr. 323, 417–423 (2002). doi:10.1002/1521-3994(200208)323:3/4<417::AID-ASNA417>3.0.CO;2-U

    Article  ADS  MATH  Google Scholar 

  • S.M. Tobias, The solar dynamo: the role of penetration, rotation and shear on convective dynamos. Space Sci. Rev. 144, 77–86 (2009). doi:10.1007/s11214-008-9442-0

    Article  ADS  Google Scholar 

  • S.M. Tobias, N.H. Brummell, T.L. Clune, J. Toomre, Transport and storage of magnetic field by overshooting turbulent compressible convection. Astrophys. J. 549, 1183–1203 (2001). doi:10.1086/319448

    Article  ADS  Google Scholar 

  • S.M. Tobias, F. Cattaneo, Limited role of spectra in dynamo theory: coherent versus random dynamos. Phys. Rev. Lett. 101(12), 125003 (2008)

    Article  ADS  Google Scholar 

  • R.K. Ulrich, Solar meridional circulation from Doppler shifts of the Fe I line at 5250 Å as measured by the 150-foot solar tower telescope at the Mt. Wilson observatory. Astrophys. J. 725(1), 658–669 (2010)

    Article  ADS  Google Scholar 

  • Y.C. Unruh, S.K. Solanki, M. Fligge, Modelling solar irradiance variations: comparison with observations, including line-ratio variations. Space Sci. Rev. 94, 145–152 (2000)

    Article  ADS  Google Scholar 

  • I.G. Usoskin, A history of solar activity over millennia. Living Rev. Sol. Phys. 10, 1 (2013). doi:10.12942/lrsp-2013-1

    Article  ADS  Google Scholar 

  • E. Vázquez-Semadeni, R. Banerjee, G.C. Gómez, P. Hennebelle, D. Duffin, R.S. Klessen, Molecular cloud evolution—IV. Magnetic fields, ambipolar diffusion and the star formation efficiency. Mon. Not. R. Astron. Soc. 414, 2511–2527 (2011)

    Article  ADS  Google Scholar 

  • A. Vögler, S. Shelyag, M. Schüssler, F. Cattaneo, T. Emonet, T. Linde, Simulations of magneto-convection in the solar photosphere. Equations, methods, and results of the MURaM code. Astron. Astrophys. 429, 335–351 (2005). doi:10.1051/0004-6361:20041507

    Article  ADS  Google Scholar 

  • S.V. Vorontsov, J. Christensen-Dalsgaard, J. Schou, V.N. Strakhov, M.J. Thompson, Helioseismic measurement of solar torsional oscillations. Science 296, 101–103 (2002). doi:10.1126/science.1069190

    Article  ADS  Google Scholar 

  • Y. Wang, N.R. Sheeley Jr., Magnetic flux transport and the Sun’s dipole moment—new twists to the Babcock–Leighton model. Astrophys. J. 375, 761–770 (1991). doi:10.1086/170240

    Article  ADS  Google Scholar 

  • Y.-M. Wang, N.R. Sheeley Jr., A.G. Nash, A new solar cycle model including meridional circulation. Astrophys. J. 383, 431–442 (1991). doi:10.1086/170800

    Article  ADS  Google Scholar 

  • J. Warnecke, P.J. Käpylä, M.J. Mantere, A. Brandenburg, Ejections of magnetic structures above a spherical wedge driven by a convective dynamo with differential rotation. Sol. Phys. 280, 299–319 (2012). doi:10.1007/s11207-012-0108-4

    Article  ADS  Google Scholar 

  • M.A. Weber, Y. Fan, M.S. Miesch, The rise of active region flux tubes in the turbulent solar convective envelope. Astrophys. J. 741, 11 (2011)

    Article  ADS  Google Scholar 

  • M.A. Weber, Y. Fan, M.S. Miesch, Comparing simulations of rising flux tubes through the solar convection zone with observations of solar active regions: constraining the dynamo field strength. Sol. Phys. 287, 239–263 (2013). doi:10.1007/s11207-012-0093-7

    Article  ADS  Google Scholar 

  • T.S. Wood, N.H. Brummell, Transport by meridional circulations in solar-type stars. Astrophys. J. 755(2), 99 (2012)

    Article  ADS  Google Scholar 

  • T.S. Wood, P. Garaud, The Sun’s meridional circulation and interior magnetic field. Astrophys. J. 738(1), 47 (2011)

    Article  ADS  Google Scholar 

  • G.A.E. Wright, Pinch instabilities in magnetic stars. Mon. Not. R. Astron. Soc. 162, 339 (1973)

    Article  ADS  Google Scholar 

  • A.R. Yeates, D. Nandy, D.H. Mackay, Exploring the physical basis of solar cycle predictions: flux transport dynamics and persistence of memory in advection- versus diffusion-dominated solar convection zones. Astrophys. J. 673, 544–556 (2008). doi:10.1086/524352

    Article  ADS  Google Scholar 

  • A.R. Yeates, D.H. Mackay, A.A. van Ballegooijen, J.A. Constable, A nonpotential model for the Sun’s open magnetic flux. J. Geophys. Res. 115, 9112 (2010). doi:10.1029/2010JA015611

    Article  Google Scholar 

  • J.-P. Zahn, S. Talon, J. Matias, Angular momentum transport by internal waves in the solar interior. Astron. Astrophys. 322, 320–328 (1997)

    ADS  Google Scholar 

  • J.-P. Zahn, A.S. Brun, S. Mathis, On magnetic instabilities and dynamo action in stellar radiation zones. Astron. Astrophys. 474, 145 (2007)

    Article  ADS  MATH  Google Scholar 

  • J. Zhao, R.S. Bogart, A.G. Kosovichev, T.L. Duvall Jr., T. Hartlep, Detection of equatorward meridional flow and evidence of double-cell meridional circulation inside the Sun. Astrophys. J. Lett. 774, 29 (2013). doi:10.1088/2041-8205/774/2/L29

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge critical comments on solar global magnetism and dynamo by Prof. H.C. Spruit. We thank two anonymous referees for detailed and constructive comments. One of us (A.S.B) thanks the University of Kyoto, RIMS and Professors M. Yamada, K. Shibata, H. Isobe and S. Takehiro for their kind invitation in Fall 2013 during which this paper was finished. This work is partially supported by the NASA LWS grant NNX08AQ34G, by the ERC STARS2 project, by the French national program on Sun-Earth relationships (INSU/PNST) and by CNES Sun-Heliosphere program, and by a Consolidated Grant by the UK STFC (ST/J001627/1STFC). We acknowledge the support from ISSI Bern, for our participation in the workshop. The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Brun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brun, A.S., Browning, M.K., Dikpati, M. et al. Recent Advances on Solar Global Magnetism and Variability. Space Sci Rev 196, 101–136 (2015). https://doi.org/10.1007/s11214-013-0028-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-013-0028-0

Keywords

Navigation