Skip to main content
Log in

Upstream Ion Cyclotron Waves at Venus and Mars

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The occurrence of waves generated by pick-up of planetary neutrals by the solar wind around unmagnetized planets is an important indicator for the composition and evolution of planetary atmospheres. For Venus and Mars, long-term observations of the upstream magnetic field are now available and proton cyclotron waves have been reported by several spacecraft. Observations of these left-hand polarized waves at the local proton cyclotron frequency in the spacecraft frame are reviewed for their specific properties, generation mechanisms and consequences for the planetary exosphere. Comparison of the reported observations leads to a similar general wave occurrence at both planets, at comparable locations with respect to the planet. However, the waves at Mars are observed more frequently and for long durations of several hours; the cyclotron wave properties are more pronounced, with larger amplitudes, stronger left-hand polarization and higher coherence than at Venus. The geometrical configuration of the interplanetary magnetic field with respect to the solar wind velocity and the relative density of upstream pick-up protons to the background plasma are important parameters for wave generation. At Venus, where the relative exospheric pick-up ion density is low, wave generation was found to mainly take place under stable and quasi-parallel conditions of the magnetic field and the solar wind velocity. This is in agreement with theory, which predicts fast wave growth from the ion/ion beam instability under quasi-parallel conditions already for low relative pick-up ion density. At Mars, where the relative exospheric pick-up ion density is higher, upstream wave generation may also take place under stable conditions when the solar wind velocity and magnetic field are quasi-perpendicular. At both planets, the altitudes where upstream proton cyclotron waves were observed (8 Venus and 11 Mars radii) are comparable in terms of the bow shock nose distance of the planet, i.e. in terms of the size of the solar wind-planetary atmosphere interaction region. In summary, the upstream proton cyclotron wave observations demonstrate the strong similarity in the interaction of the outer exosphere of these unmagnetized planets with the solar wind upstream of the planetary bow shock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • M.H. Acuna et al., Magnetic field of Mars: summary of results from the aerobraking and mapping orbits. J. Geophys. Res. 106(E10), 23403–23418 (2001)

    Article  ADS  Google Scholar 

  • S. Barabash, R. Lundin, Reflected ions near Mars: Phobos 2 observations. Geophys. Res. Lett. 20, 787 (1993)

    Article  ADS  Google Scholar 

  • S. Barabash et al., The analyser of space plasmas and energetic atoms (ASPERA-4) for the Venus express mission. Planet. Space Sci. 55, 1772 (2007)

    Article  ADS  Google Scholar 

  • C. Bertucci, Étude de l’interaction du vent solaire avec Mars: implications sur les méchanismes d’échappement atmosphérique. Ph.D. thesis, Univ. Paul Sabatier, Toulouse (2003)

  • C. Bertucci, C. Mazelle, M. Acuna, Interaction of the solar wind with Mars from Mars Global Surveyor MAG/ER observations. J. Atmos. Sol.-Terr. Phys. 67, 1797 (2005)

    Article  ADS  Google Scholar 

  • D.A. Brain, F. Bagenal, M. Acuna et al., Observations of low-frequency electro-magnetic plasma waves upstream from the Martian shock. J. Geophys. Res. 107, 1076 (2002). doi:10.1029/2000JA000416

    Article  Google Scholar 

  • A.L. Brinca, Cometary linear instabilities: from profusion to perspective, in “Cometary Plasma Processes”. Geophys. Monogr. 61, 211–221 (1991)

    Article  Google Scholar 

  • A.J. Coates, B. Wilken, A.D. Johnstone et al., Bulk properties and velocity distributions of water group ions at Comet Halley: Giotto measurements. J. Geophys. Res. 95, 249 (1990)

    Google Scholar 

  • M.M. Cowee, D. Winske, C.T. Russell, R. Strangeway, 1D hybrid simulation of planetary ion-pickup: energy partition. Geophys. Res. Lett. 34, L02113 (2007). doi:10.1029/2006GL028285

    Article  Google Scholar 

  • M.M. Cowee, C.T. Russell, R.J. Strangeway, One-dimensional hybrid simulations of planetary ion pickup: effects of variable plasma and pickup conditions. J. Geophys. Res. 113, A08220 (2008). doi:10.1029/2008JA013066

    Article  Google Scholar 

  • M.M. Cowee, S.P. Gary, H.Y. Wei, R.L. Tokar, C.T. Russell, An explanation for the lack of ion cyclotron wave generation by pickup ions at Titan: 1D hybrid simulation results. J. Geophys. Res. 115, A10224 (2010). doi:10.1029/2010JA015769

    Article  ADS  Google Scholar 

  • G.K. Crawford, R.J. Strangeway, C.T. Russell, VLF emissions in the Venus foreshock: comparisons with terrestrial observations. J. Geophys. Res. 98, 15305 (1993)

    Article  ADS  Google Scholar 

  • M. Delva, T.L. Zhang, M. Volwerk et al.. First upstream proton cyclotron wave observations at Venus. Geophys. Res. Lett. 35, L03205 (2008a). doi:10.1029/2007GL032594

    Article  Google Scholar 

  • M. Delva, T.L. Zhang, M. Volwerk et al., Upstream proton cyclotron wave observations at Venus. Planet. Space Sci. 56, 1293 (2008b). doi:10.1016/j.pss.2008.04.014

    Article  ADS  Google Scholar 

  • M. Delva, T.L. Zhang, M. Volwerk et al., Proton cyclotron waves in the solar wind at Venus. J. Geophys. Res. 113, E00B06 (2008c). doi:10.1029/2008JE003148

    Article  Google Scholar 

  • M. Delva, M. Volwerk, C. Mazelle, J.Y. Chaufray, J.L. Bertaux et al., Hydrogen in the extended Venus exosphere. Geophys. Res. Lett. 36, L01203 (2009). doi:10.1029/2008GL036164

    Article  Google Scholar 

  • M. Delva, C. Mazelle, C. Bertucci et al., Proton cyclotron wave generation mechanisms upstream of Venus. J. Geophys. Res. 116 (2011). doi:10.1029/2010JA015826

  • A. Galli, P. Wurz, H. Lammer et al., The hydrogen exospheric density profile measured with ASPERA-3/NPD. Space Sci. Rev. 126, 447 (2006). doi:10.1007/s11214-006-9089-7

    Article  ADS  Google Scholar 

  • P. Gary, Electromagnetic ion/ion instabilities and their consequences in space plasmas: a review. Space Sci. Rev. 56, 373 (1991)

    Article  ADS  Google Scholar 

  • K.H. Glassmeier, A.J. Coates, M.H. Acuna et al., Spectral characteristics of low-frequency plasma turbulence upstream of Comet P/Halley. J. Geophys. Res. 94(A1), 37 (1989)

    Article  ADS  Google Scholar 

  • H. Gunell, M. Holmström, H.K. Biernat, N.V. Erkaev, Planetary ENA imaging: Venus and a comparison with Mars. Planet. Space Sci. 53, 433 (2005)

    Article  ADS  Google Scholar 

  • M. Holmström, E. Kallio, The solar wind interaction with Venus and Mars: energetic neutral atom and X-ray imaging. Adv. Space Res. 33, 187 (2004)

    Article  ADS  Google Scholar 

  • D.E. Huddleston, A.D. Johnstone, Relationship between wave energy and free energy from pick-up ions in the Comet Halley environment. J. Geophys. Res. 97, 12217 (1992)

    Article  ADS  Google Scholar 

  • D.E. Huddleston, R.J. Strangeway, J. Warnecke et al., Ion cyclotron waves in the Io torus during the Galileo encounter: warm plasma dispersion analysis. Geophys. Res. Lett. 24, 2143 (1997)

    Article  ADS  Google Scholar 

  • L.K. Jian, C.T. Russell, J.G. Luhmann, R.J. Strangeway, J.S. Leisner, A.B. Galvin, Ion-cyclotron waves in the solar wind observed by STEREO near 1 AU. Astrophys. J. 701(2), L105–L109 (2009)

    Article  ADS  Google Scholar 

  • A.D. Johnstone, K.H. Glassmeier, M.H. Acuna et al., Waves in the magnetic field and solar wind flow outside the bow shock at Comet Halley. Astron. Astrophys. 187, 47 (1987)

    ADS  Google Scholar 

  • E. Kallio, J.G. Luhmann, S. Barabash, Charge exchange near Mars: the solar wind absorption and energetic neutral atom production. J. Geophys. Res. 102, 22183 (1997)

    Article  ADS  Google Scholar 

  • E. Kallio, R. Järvinen, P. Janhunen, Venus–solar wind interaction: asymmetries and the escape of O+ ions. Planet. Space Sci. 54, 1472 (2006)

    Article  ADS  Google Scholar 

  • M. Lee, Ultra-low frequency waves at comets, in “Plasma waves and instabilities at comets and in magnetospheres”. Geophys. Monogr. 53, 13 (1989)

    Article  Google Scholar 

  • J.S. Leisner, C.T. Russell, M.K. Dougherty et al., Ion cyclotron waves in Saturn’s E ring: initial Cassini observations. Geophys. Res. Lett. 33, L11101 (2006). doi:10.1029/2005GL024875

    Article  ADS  Google Scholar 

  • H.I.M. Lichtenegger, H. Lammer, Y.N. Kulikov et al., Effects of low energetic neutral atoms on martian and Venusian dayside exospheric temperature estimations. Space Sci. Rev. 126, 469 (2006). doi:10.1007/s11214-006-9082-1

    Article  ADS  Google Scholar 

  • C. Mazelle, F.M. Neubauer, Discrete wave packets at the proton cyclotron frequency at Comet P/Halley. Geophys. Res. Lett. 20, 153 (1993)

    Article  ADS  Google Scholar 

  • C. Mazelle et al., Bow shock and upstream phenomena at Mars. Space Sci. Rev. 111(1–2), 115 (2004)

    Article  ADS  Google Scholar 

  • C. Mazelle, C. Bertucci, J.G. Trotignon et al., Proton cyclotron waves at Mars revisited. In: AGU Fall Meeting 2009. Abstract #P11B-120 (2009)

  • A.F. Nagy, J. Kim, T.E. Cravens, Hot hydrogen and oxygen atoms in the upper atmospheres of Venus and Mars. Ann. Geophys. 8, 251 (1990)

    ADS  Google Scholar 

  • J.L. Phillips, D.L. McComas, The magnetosheath and magnetotail of Venus. Space Sci. Rev. 55, 1 (1991)

    Article  ADS  Google Scholar 

  • B.R. Ragot, Distributions of magnetic field orientations in the turbulent solar wind. Astrophys. J. 651, 1209–1218 (2006)

    Article  ADS  Google Scholar 

  • C.T. Russell, E. Chou, J.G. Luhmann et al., Solar cycle variations in the neutral exosphere inferred from the location of the Venus bow shock. Adv. Space Res. 10, (5)3–(5)9 (1990a)

    ADS  Google Scholar 

  • C.T. Russell, J.G. Luhmann, K. Schwingenschuh, W. Riedler, Upstream waves at Mars: Phobos observations. Geophys. Res. Lett. 17, 897 (1990b)

    Article  ADS  Google Scholar 

  • C.T. Russell, S.S. Mayerberger, X. Blanco-Cano, Proton cyclotron waves at Mars and Venus. Adv. Space Res. 38, 745 (2006)

    Article  ADS  Google Scholar 

  • K. Sauer, E. Dubinin, J.F. McKenzie, New type of soliton in bi-ion plasmas and possible implications. Geophys. Res. Lett. 28, 3589 (2001)

    Article  ADS  Google Scholar 

  • B.T. Tsurutani, E.J. Smith, Hydromagnetic waves and instabilities associated with cometary pick-up: ICE observations. Geophys. Res. Lett. 13, 263 (1986)

    Article  ADS  Google Scholar 

  • B.T. Tsurutani, Comets: a laboratory for plasma waves and instabilities, in “Cometary Plasma Processes”. Geophys. Monogr. 61, 189 (1991)

    Article  Google Scholar 

  • D. Vignes, C. Mazelle, H. Reme et al., The solar wind interaction with mars: locations and shapes of the bow shock and the magnetic pile-up boundary from the observations of the MAG/ER experiment onboard Mars Global Surveyor. Geophys. Res. Lett. 27, 49 (2000)

    Article  ADS  Google Scholar 

  • M. Volwerk, M.G. Kivelson, K.K. Khurana, Wave activity in Europa’s wake: implications for ion pickup. J. Geophys. Res. 106, 26033 (2001)

    Article  ADS  Google Scholar 

  • Y. Watanabe, T. Terasawa, On the excitation mechanism of the low-frequency upstream waves. J. Geophys. Res. 89, 26623 (1984)

    Article  ADS  Google Scholar 

  • H.Y. Wei, C.T. Russell, Proton cyclotron waves at Mars: exosphere structure and evidence for a fast neutral disk. Geophys. Res. Lett. 33 (2006). doi:10.1029/2006GL026244

  • H.Y. Wei, C.T. Russell, T.L. Zhang, X. Blanco-Cano, Comparative study of ion cyclotron waves at Mars, Venus and Earth. Planet. Space Sci. (2010). doi:10.1016/j.pss.2010.01.004

    Google Scholar 

  • M.H.G. Zhang, J.G. Luhmann, A.F. Nagy et al., Oxygen ionization rates at Mars and Venus—relative contributions of impact ionization and charge exchange. J. Geophys. Res. 98(E2), 3311 (1993)

    Article  ADS  Google Scholar 

  • T.L. Zhang et al., Initial Venus Express magnetic field observations of the Venus bow shock location at solar minimum. Planet. Space Sci. 56, 785 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magda Delva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delva, M., Mazelle, C. & Bertucci, C. Upstream Ion Cyclotron Waves at Venus and Mars. Space Sci Rev 162, 5–24 (2011). https://doi.org/10.1007/s11214-011-9828-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-011-9828-2

Keywords

Navigation