Skip to main content
Log in

Polarity Reversals from Paleomagnetic Observations and Numerical Dynamo Simulations

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Recent advances in the study of geomagnetic field reversals are reviewed. These include studies of the transitional field during the last geomagnetic reversal and the last geomagnetic excursion based on paleomagnetic observations, and analysis of reversals in self-consistent 3D numerical dynamo simulations. Field models inferred from observations estimate reversal duration in the range of 1–10 kyr (depending on site location). The transitional fields during both the Matuyama/Brunhes reversal and the Laschamp excursion are characterized by low-latitude reversed flux formation and subsequent poleward migration. During both events the dipole as well as the non-dipole field energies decrease. However, while the non-dipole energy dominates the dipole energy for a period of 2 kyr in the reversal, the non-dipole energy merely exceeds the dipole energy for a very brief period during the excursion. Numerical dynamo simulations show that stronger convection, slower rotation, and lower electrical conductivity provide more favorable conditions for reversals. A non-dimensional number that depends on the typical length scale of the flow and represents the relative importance of inertial effects, termed the local Rossby number, seems to determine whether a dynamo will reverse or not. Stable polarity periods in numerical dynamos may last about 1 Myr, whereas reversals may last about 10 kyr. Numerical dynamo reversals often involve prolonged dipole collapse followed by shorter directional instability of the dipole axis, with advective processes governing the field variation. Magnetic upwellings from the equatorial inner-core boundary that produce reversed flux patches at low-latitudes of the core-mantle boundary could be significant in triggering reversals. Inferences from the observational and modeling sides are compared. We summarize with an outlook on some open questions and future prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • L. Alldredge, Harmonics required in main field and secular variation models. J. Geomagn. Geoelectr. 36, 63–72 (1984)

    Google Scholar 

  • H. Amit, P. Olson, Geomagnetic dipole tilt changes induced by core flow. Phys. Earth Planet. Inter. 166, 226–238 (2008)

    Article  ADS  Google Scholar 

  • H. Amit, P. Olson, A dynamo cascade interpretation of the geomagnetic dipole decrease. Geophys. J. Int. 181, 1411–1427 (2010)

    ADS  Google Scholar 

  • H. Amit, J. Aubert, G. Hulot, P. Olson, A simple model for mantle-driven flow at the top of Earth’s core. Earth Planets Space 60, 845–854 (2008)

    ADS  Google Scholar 

  • J. Aubert, H. Amit, G. Hulot, Detecting thermal boundary control in surface flows from numerical dynamos. Phys. Earth Planet. Inter. 160, 143–156 (2007)

    Article  ADS  Google Scholar 

  • J. Aubert, H. Amit, G. Hulot, P. Olson, Thermo-chemical wind flows couple Earth’s inner core growth to mantle heterogeneity. Nature 454, 758–761 (2008a)

    Article  ADS  Google Scholar 

  • J. Aubert, J. Aurnou, J. Wicht, The magnetic structure of convection-driven numerical dynamos. Geophys. J. Int. 172, 945–956 (2008b)

    Article  ADS  Google Scholar 

  • J. Aubert, S. Labrosse, C. Poitou, Modelling the paleo-evolution of the geodynamo. Geophys. J. Int. 179, 1414–1428 (2009)

    Article  ADS  Google Scholar 

  • J. Aurnou, S. Andreadis, L. Zhu, P. Olson, Experiments on convection in Earth’s core tangent cylinder. Earth Planet. Sci. Lett. 212, 119–134 (2003)

    Article  ADS  Google Scholar 

  • S. Baumgartner, J. Beer, J. Masarik, G. Wagner, L. Meynadier, H.A. Synal, Geomagnetic modulation of the 36cl flux in the grip ice core, greenland. Science 279(5355), 1330–1332 (1998)

    Article  ADS  Google Scholar 

  • M. Berhanu, R. Monchaux, S. Fauve, N. Mordant, F. Petrelis, A. Chiffaudel, F. Daviaud, B. Dubrulle, L. Marie, F. Ravelet, M. Bourgoin, P. Odier, J.-F. Pinton, R. Volk, Magnetic fld reversals in an experimental turbulent dynamo. Europhys. Lett. 77 (2007). doi:10.1209/0295–5075/77/59001

  • C.L. Blanchet, N. Thouveny, T. de Garidel-Thoron, Evidence for multiple paleomagnetic intensity lows between 30 and 50 ka bp from a western equatorial pacific sedimentary sequence. Quat. Sci. Rev. 25, 1039–1052 (2006)

    Article  ADS  Google Scholar 

  • U. Bleil, T.V. Dobeneck, Geomagnetic events and relative paleointensity records; clues to high-resolution paleomagnetic chronostratigraphies of late quaternary marine sediments?, in Use of Proxies in Paleoceanography; Examples from the South Atlantic, ed. by G. Fischer, G. Wefer (Springer, Berlin, 1999), pp. 635–654

    Google Scholar 

  • J. Bloxham, The expulsion of magnetic flux from the Earth’s core. Geophys. J. R. Astr. Soc. 87, 669–678 (1986)

    Google Scholar 

  • J. Bloxham, D. Gubbins, Geomagnetic field analysis—iv. Testing the frozen-flux hypothesis. Geophys. J. R. Astr. Soc. 84, 139–152 (1986)

    ADS  Google Scholar 

  • J. Bloxham, A. Jackson, Fluid flow near the surface of the Earth’s outer core. Rev. Geophys. 29, 97–120 (1991)

    Article  ADS  Google Scholar 

  • N. Bonhommet, J. Babkine, Sur la presence daimentations inversees dans la chaine des puys. C. R. Acad. Sci. Ser. B 264, 92 (1967)

    Google Scholar 

  • M.B. Brown, R. Holme, A. Bargery, Exploring the influence of the non-dipole field on magnetic records for field reversals and excursions. Geophys. J. Int. 168, 541–550 (2007)

    Article  ADS  Google Scholar 

  • B. Brunhes, Recherches sur le direction d’aimantation des roches volcaniques. J. Phys. 5, 705–724 (1906)

    Google Scholar 

  • F. Busse, R. Simitev, Toroidal flux oscillation as possible cause of geomagnetic excursions and reversals. Phys. Earth Planet. Inter. 168, 237–243 (2008)

    Article  ADS  Google Scholar 

  • S.C. Cande, D.V. Kent, Revised calibration of the geomagnetic polarity timescale forthe late cretaceous and cenozoic. J. Geophys. Res. 100, 6093–6095 (1995)

    Article  ADS  Google Scholar 

  • W.S. Cassata, B.S. Singer, J. Cassidy, Laschamp and mono lake geomagnetic excursions recorded in new zealand. Earth Planet. Sci. Lett. 268, 76–88 (2008)

    Article  ADS  Google Scholar 

  • J.E.T. Channell, Late brunhes polarity excursions (mono lake, laschamp, iceland basin and pringle falls) recorded at odp site 919 (Irminger basin). Earth Planet. Sci. Lett. 244, 378–393 (2006)

    Article  ADS  Google Scholar 

  • U. Christensen, J. Aubert, Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields. Geophys. J. Int. 166, 97–114 (2006)

    Article  ADS  Google Scholar 

  • U. Christensen, P. Olson, Secular variation in numerical geodynamo models with lateral variations of boundary heat flow. Phys. Earth Planet. Inter. 138, 39–54 (2003)

    Article  ADS  Google Scholar 

  • U. Christensen, J. Wicht, Numerical dynamo simulations, in Treatise on Geophysics, ed. by P. Olson, vol. 8 (Elsevier, Amsterdam, 2007)

    Google Scholar 

  • U. Christensen, P. Olson, G. Glatzmaier, Numerical modelling of the geodynamo: a systematic parameter study. Geophys. J. Int. 138, 393–409 (1999)

    Article  ADS  Google Scholar 

  • A. Chulliat, N. Olsen, Observation of magnetic diffusion in the Earth’s outer core from Magsat, Ørsted and CHAMP data. J. Geophys. Res. 115, B05105 (2010). doi:10.1029/2009JB006994

    Article  Google Scholar 

  • B.M. Clement, Geographical distribution of transitional VGPs: evidence for non-zonal symmetry during the matuyama-brunhes geomagnetic reversal. Earth Planet. Sci. Lett. 104, 48–58 (1991)

    Article  ADS  Google Scholar 

  • B.M. Clement, Dependence of the duration of geomagnetic polarity reversals on site latitude. Nature 428, 637–640 (2004)

    Article  ADS  Google Scholar 

  • B.M. Clement, D.V. Kent, A southern hemisphere record of the matuyama-brunhes polarity reversal. Geophys. Res. Lett. 18, 81–84 (1991)

    Article  ADS  Google Scholar 

  • R. Coe, G. Glatzmaier, Symmetry and stability of the geomagnetic field. Geophys. Res. Lett. 33, L21311 (2006)

    Article  ADS  Google Scholar 

  • R.S. Coe, L. Hongre, G.A. Glatzmaier, An examination of simulated geomagnetic reversals from a palaeomagnetic perspective. Philos. Trans. R. Soc. Lond. 358, 1141–1170 (2000)

    Article  ADS  Google Scholar 

  • A. Cox, Reversed flux as reversal mechanism. Rev. Geophys. Space Phys. 13, 35–51 (1975)

    Article  ADS  Google Scholar 

  • A. Cox, J. Hillhouse, M. Fuller, Paleomagnetic records of polarity transitions, excursions, and secular variation. Rev. Geophys. Space Phys. 13, 185–189 (1975)

    Article  Google Scholar 

  • P. Davidson, An Introduction to Magnetohydrodynamics (Cambridge University Press, Cambridge, 2001)

    Book  MATH  Google Scholar 

  • E. Dormy, J.-P. Valet, V. Courtillot, Numerical models of the geodynamo and observational constraints. Geochem. Geophys. Geosyst. 1(10), 1037 (2000). doi:10.1029/2000GC000062

    Article  Google Scholar 

  • P. Driscoll, P. Olson, Polarity reversals in geodynamo models with core evolution. Earth Planet. Sci. Lett. 282, 24–33 (2009)

    Article  ADS  Google Scholar 

  • G. Glatzmaier, Numerical simulation of stellar convective dynamos. 1: The model and method. J. Comp. Phys. 55, 461–484 (1984)

    Article  ADS  Google Scholar 

  • G. Glatzmaier, Dynamo models: how realistic are they? Annu. Rev. Earth Planet. Sci. 30, 237–257 (2002)

    Article  ADS  Google Scholar 

  • G. Glatzmaier, P. Roberts, A three-dimensional convective dynamo solution with rotating and finitely conducting inner core and mantle. Phys. Earth Planet. Inter. 91, 63–75 (1995a)

    Article  Google Scholar 

  • G. Glatzmaier, P. Roberts, A three-dimensional self-consistent computer simulation of a geomagnetic field reversal. Nature 377, 203–209 (1995b)

    Article  ADS  Google Scholar 

  • G. Glatzmaier, P. Roberts, Simulating the geodynamo. Comput. Phys. 38, 269–288 (1997)

    Google Scholar 

  • G. Glatzmaier, R. Coe, L. Hongre, P. Roberts, The role of the earth’s mantle in controlling the frequency of geomagnetic reversals. Nature 401, 885–890 (1999)

    Article  ADS  Google Scholar 

  • D. Gubbins, Mechanism for geomagnetic polarity reversals. Nature 326, 167–169 (1987)

    Article  ADS  Google Scholar 

  • D. Gubbins, The distinction between geomagnetic excursions and reversals. Geophys. J. Int. 137, F1–F3 (1999)

    Article  Google Scholar 

  • D. Gubbins, A. Jones, C. Finlay, Fall in Earth’s magnetic field is erratic. Science 312, 900–902 (2006)

    Article  ADS  Google Scholar 

  • D. Gubbins, P. Willis, B. Sreenivasan, Correlation of Earth’s magnetic field with lower mantle thermal and seismic structure. Phys. Earth Planet. Inter. 162, 256–260 (2007)

    Article  ADS  Google Scholar 

  • H. Guillou, B.S. Singer, C. Laj, C. Kissel, S. Scailleta, B.R. Jicha, On the age of the laschamp geomagnetic excursion. Earth Planet. Sci. Lett. 227, 331–341 (2004)

    Article  ADS  Google Scholar 

  • Y. Guyodo, J.-P. Valet, Global changes in intensity of the earth’s field during the past 800 kyr. Nature 399, 249–252 (1999)

    Article  ADS  Google Scholar 

  • F. Heller, Self-reversal of natural remanent magnetisation in the olby-laschamp lavas. Nature 284(5754), 334–335 (1980)

    Article  ADS  Google Scholar 

  • K.A. Hoffman, Palaeomagnetic excursions, aborted reversals and transitional fields. Nature 294, 67–69 (1981)

    Article  ADS  Google Scholar 

  • K.A. Hoffman, Dipolar reversal states of the geomagnetic field and core mantle dynamics. Nature 359, 789–794 (1992)

    Article  ADS  Google Scholar 

  • K.A. Hoffman, Transitional paleomagnetic field behavior: Preferred paths or patches? Surv. Geophys. 17, 207–211 (1996)

    Article  ADS  Google Scholar 

  • K. Hori, J. Wicht, U. Christensen, The effect of thermal boundary conditions on dynamos driven by internal heating. Phys. Earth Planet. Inter. (2010). doi:10.1016/j.pepi.2010.06.011

    MATH  Google Scholar 

  • G. Hulot, F. Lhuillier, J. Aubert, Earth’s dynamo limit of predictability. Geophys. Res. Let. 37, L06305 (2010). doi:10.1029/2009GL041869

    Article  Google Scholar 

  • M. Hyodo, Possibility of reconstruction of the past geomagnetic field from homogeneous sediments. J. Geomagn. Geoelectr. 36, 45–62 (1984)

    Google Scholar 

  • M. Ingham, G. Turner, Behaviour of the geomagnetic field during the matuyama-brunhes polarity transition. Phys. Earth Planet. Inter. 168, 163–178 (2008)

    Article  ADS  Google Scholar 

  • A. Jackson, A. Jonkers, M. Walker, Four centuries of geomagnetic secular variation from historical records. Philos. Trans. R. Soc. Lond. A358, 957–990 (2000)

    ADS  Google Scholar 

  • D. Jault, Axial invariance of rapidly varying diffusionless motions in the Earth’s core interior. Phys. Earth Planet. Inter. 166, 67–76 (2008)

    ADS  Google Scholar 

  • A. Jonkers, Long-range dependence in the cenozoic reversal record. Phys. Earth Planet. Inter. 135, 253–266 (2003)

    Article  ADS  Google Scholar 

  • C. Kissel, C. Laj, L. Labeyrie, T. Dokken, A. Voelker, D. Blamart, Rapid climatic variations during marine isotope stage 3: magnetic analyses of sediments from Nordic seas and north Atlantic. Earth Planet. Sci. Lett. 171, 489–502 (1999)

    Article  ADS  Google Scholar 

  • M.F. Knudsen, P.M. Holm, N. Abrahamsen, Paleomagnetic results from a reconnaissance study of Santiago (cape verde islands): Identification of cryptochron c2r.2r-1. Phys. Earth Planet. Inter. 173, 279–289 (2009)

    Article  ADS  Google Scholar 

  • M. Korte, C. Constable, Continuous geomagnetic field models for the past 7 millennia: 2, cals7k. Geochem. Geophys. Geosyst. 6, Q02H16 (2005). doi:10.1029/2004GC000801

    Article  Google Scholar 

  • D. Krása, V.P. Shcherbakov, T. Kunzmann, N. Petersen, Self-reversal of remanent magnetization in basalts due to partially oxidized titanomagnetites. Geophys. J. Int. 162, 115–136 (2005)

    Article  ADS  Google Scholar 

  • C. Kutzner, U. Christensen, Effects of driving mechanisms in geodynamo models. Geophys. Res. Lett. 27, 29–32 (2000)

    Article  ADS  Google Scholar 

  • C. Kutzner, U. Christensen, From stable dipolar towards reversing numerical dynamos. Phys. Earth Planet. Inter. 131, 29–45 (2002)

    Article  ADS  Google Scholar 

  • C. Kutzner, U. Christensen, Simulated geomagnetic reversals and preferred virtual geomagnetic pole paths. Geophys. J. Int. 157, 1105–1118 (2004)

    Article  ADS  Google Scholar 

  • C. Laj, J.E.T. Channell, Geomagnetic excursions, in Treatise in Geophysics, ed. by M. Kono, vol. 5 (Elsevier, Amsterdam, 2007), pp. 373–416

    Chapter  Google Scholar 

  • C. Laj, A. Mazaud, R. Weeks, M. Fuller, E. Herrero-Bevera, Geomagnetic reversal paths. Nature 351, 447 (1991)

    Article  ADS  Google Scholar 

  • C. Laj, N. Szeremeta, C. Kissel, H. Guillou, Geomagnetic paleointensities at Hawaii between 3.9 and 2.1 ma: preliminary results. Earth Planet. Sci. Lett. 179, 191–204 (2000)

    Article  ADS  Google Scholar 

  • C. Laj, C. Kissel, V. Scao, J. Beer, D.M. Thomas, H. Guillou, R. Muscheler, G. Wagner, Geomagnetic intensity and inclination variations at Hawaii for the past 98 kyr from core soh-4: a new study and a comparison with existing contemporary data. Phys. Earth Planet. Inter. 129, 205–243 (2002)

    Article  ADS  Google Scholar 

  • C. Laj, C. Kissel, A.P. Roberts, Geomagnetic field behavior during the iceland basin and laschamp geomagnetic excursions: a simple transitional field geometry? Geochem. Geophys. Geosyst. 7(3), Q03004 (2006). doi:10.1029/2005GC001122

    Article  Google Scholar 

  • L. Lanci, C. Kissel, R. Leonhardt, C. Laj, Morphology of the iceland basin excursion from a spherical harmonics analysis and an iterative bayesian inversion procedure of sedimentary records. Phys. Earth Planet. Inter. 169, 131–139 (2008)

    Article  ADS  Google Scholar 

  • C.G. Langereis, Excursions in geomagnetism. Nature 399, 207–208 (1999)

    Article  ADS  Google Scholar 

  • C.G. Langereis, A.A.M.V. Hoof, P. Rochette, Longitudinal confinement of geomagnetic reversal paths as a possible sedimentary artifact. Nature 358, 226–230 (1992)

    Article  ADS  Google Scholar 

  • C.G. Langereis, M.J. Dekkers, G.J. De Lange, M. Paterne, P.J.M. Van Santvoort, Magnetostratigraphy and astronomical calibration of the: Last 1.1 myr from an eastern Mediterranean piston core and dating of short events in the brunhes. Geophys. J. Int. 129(1), 75–94 (1997)

    Article  ADS  Google Scholar 

  • R. Leonhardt, K. Fabian, Paleomagnetic reconstruction of the global geomagnetic field evolution during the matuyama/brunhes transition: Iterative bayesian inversion and independent verification. Earth Planet. Sci. Lett. 253, 172–195 (2007)

    Article  ADS  Google Scholar 

  • R. Leonhardt, H.C. Soffel, A reversal of the earth’s magnetic field recorded in midmiocene lava flows of Gran canaria: Paleointensities. J. Geophys. Res. 107(B11), 2299 (2002). doi:10.1029/2001JB000949

    Article  ADS  Google Scholar 

  • R. Leonhardt, K. Fabian, M. Winklhofer, A. Ferk, C. Kissel, C. Laj, Geomagnetic field evolution during the laschamp excursion. Earth Planet. Sci. Lett. 278, 87–95 (2009)

    Article  ADS  Google Scholar 

  • S. Levi, H. Audunsson, R.A. Duncan, L. Kristjansson, P.-Y. Gillot, S.P. Jakobsson, Late pleistocene geomagnetic excursion in icelandic lavas: confirmation of the laschamp excursion. Earth Planet. Sci. Lett. 96, 443–457 (1990)

    Article  ADS  Google Scholar 

  • J. Li, T. Sato, A. Kageyama, Repeated and sudden reversals of the dipole field generated by spherical dynamo action. Science 295, 1887–1890 (2002)

    Article  ADS  Google Scholar 

  • L.E. Lisiecki, M.E. Raymo, A pliocene-pleistocene stack of 57 globally distributed benthic d18o records. Paleoceanography 20, PA1003 (2005). doi:10.1029/2004PA001071

    Article  ADS  Google Scholar 

  • J. Love, Paleomagnetic volcanic data and geometric regularity of reversals and excursions. J. Geophys. Res. 103, 12,435–12,452 (1998)

    Article  ADS  Google Scholar 

  • J.J. Love, Statistical assessment of preferred transitional vgp longitudes on palaeomagnetic lava data. Geophys. J. Int. 140, 211–221 (2000)

    Article  ADS  Google Scholar 

  • J.J. Love, A. Mazaud, A database for the matuyama-brunhes magnetic reversal. Phys. Earth Planet. Int. 103, 207–245 (1997)

    Article  ADS  Google Scholar 

  • S.P. Lund, M. Schwartz, L. Keigwin, T. Johnson, Deep-sea sediment records of the laschamp geomagnetic field excursion (<41,000 calender years before present). J. Geophys. Res. 110, B04101 (2005). doi:10.1029/2003JB002943

    Article  Google Scholar 

  • G. Masters, G. Laske, H. Bolton, A. Dziewonski, The relative behavior of shear velocity, bulk sound velocity, and compressional velocity in the mantle: implications for chemical and thermal structure, in Earth’s Deep Interior, ed. by S. Karato, A. Forte, R. Liebermann, G. Masters, L. Stixrude. AGU Monograph, vol. 117 (AGU, Washington D.C., 2000)

    Google Scholar 

  • A. Mazaud, An attempt at reconstructing the geomagnetic field at the core-mantle boundary during the upper Olduvai polarity transition (1.66 myear). Phys. Earth Planet. Inter. 90, 211–219 (1995)

    Article  ADS  Google Scholar 

  • A. Mazaud, ‘Sawtooth’ variation in magnetic intensity profiles and delayed acquisition of magnetization in deep sea cores. Earth Planet. Sci. Lett. 139, 379–386 (1996)

    Article  ADS  Google Scholar 

  • A. Mazaud, C. Laj, M. Bender, A geomagnetic chronology for antarctic ice accumulation. Geophys. Res. Lett. 21(5), 337–340 (1994)

    Article  ADS  Google Scholar 

  • R.T. Merrill, P.L. McFadden, Geomagnetic polarity transitions. Rev. Geophys. 37, 201–226 (1999)

    Article  ADS  Google Scholar 

  • R. Merrill, M. McElhinny, P. McFadden, The Magnetic Field of the Earth: Paleomagnetism, the Core, and the Deep Mantle (Academic Press, San Diego, 1998)

    Google Scholar 

  • H. Moffatt, Magnetic Field Generation in Electrically Conducting Fluids (Cambridge University Press, Cambridge, 1978)

    Google Scholar 

  • F. Nimmo, Energetics of the core, in Treatise on Geophysics, ed. by P. Olson, vol. 8 (Elsevier, Amsterdam, 2007)

    Google Scholar 

  • N. Nishikawa, K. Kusano, Simulation study of symmetry-breaking instability and the dipole field reversal in a rotating spherical shell dynamo. Phys. Plasmas 15, 082903 (2008)

    Article  ADS  Google Scholar 

  • N. Olsen, M. Mandea, Rapidly changing flows in the Earth’s core. Nature Geosci. 1, 390–394 (2008)

    Article  ADS  Google Scholar 

  • P. Olson, Gravitational dynamos and the low frequency geomagnetic secular variation. Proc. Nat. Acad. Sci. 104, 20159–20166 (2007)

    Article  ADS  Google Scholar 

  • P. Olson, H. Amit, Changes in earth’s dipole. Naturwissenschaften 93, 519–542 (2006)

    Article  ADS  Google Scholar 

  • P. Olson, U. Christensen, The time averaged magnetic field in numerical dynamos with nonuniform boundary heat flow. Geophys. J. Int. 151, 809–823 (2002)

    Article  ADS  Google Scholar 

  • P. Olson, U. Christensen, Dipole moment scaling for convection-driven planetary dynamos. Earth Planet. Sci. Lett. 250, 561–571 (2006)

    Article  ADS  Google Scholar 

  • P. Olson, U. Christensen, G. Glatzmaier, Numerical modeling of the geodynamo: Mechanisms of field generation and equilibration. J. Geophys. Res. 104, 10383–110404 (1999)

    Article  ADS  Google Scholar 

  • P. Olson, P. Driscoll, H. Amit, Dipole collapse and reversal precursors in a numerical dynamo. Phys. Earth Planet. Inter. 173, 121–140 (2009)

    Article  ADS  Google Scholar 

  • P. Olson, R. Coe, P. Driscoll, G. Glatzmaier, P. Roberts, Geodynamo reversal frequency and heterogeneous core-mantle boundary heat flow. Phys. Earth Planer. Inter. 180, 66–79 (2010)

    Article  ADS  Google Scholar 

  • E. Parker, Hydromagnetic dynamo models. Astrophys. J. 121, 293–314 (1955)

    Article  ADS  Google Scholar 

  • M. Prévot, P. Camps, Absence of preferred longitude sectors for poles from volcanic records of geomagnetic reversals. Nature 366, 53–57 (1993)

    Article  ADS  Google Scholar 

  • M. Prévot, E.A. Mankinen, R.S. Coe, S. Grommé, The Steens mountain (Oregon) geomagnetic polarity transition 2. field intensity variations and discussion of reversal models. J. Geophys. Res. 90, 10417–10448 (1985)

    Article  ADS  Google Scholar 

  • A.P. Roberts, Geomagnetic excursions: Knowns and unknowns. Geophys. Res. Lett. 35, L17307 (2008)

    Article  ADS  Google Scholar 

  • P. Roberts, S. Scott, On analysis of the secular variation, 1, a hydromagnetic constraint: Theory. J. Geomagn. Geoelectr. 17, 137–151 (1965)

    Google Scholar 

  • A.P. Roberts, M. Winklhofer, Why are geomagnetic excursions not always recorded in sediments? Constraints from post-depositional remanent magnetization lock-in modelling. Earth Planet. Sci. Lett. 227, 345–359 (2004)

    Article  ADS  Google Scholar 

  • J. Rotvig, An investigation of reversing numerical dynamos driven by either differential or volumetric heating. Phys. Earth Planet. Inter. 176, 69–82 (2009)

    Article  ADS  Google Scholar 

  • D. Ryan, G. Sarson, Are geomagnetic field reversals controlled by turbulence within the Earth’s core? Geophys. Res. Lett. 34, L02307 (2007). doi:10.1029/2006GL028291

    Article  Google Scholar 

  • G. Sarson, C. Jones, A convection driven geodynamo reversal model. Phys. Earth Planet. Inter. 111, 3–20 (1999)

    Article  ADS  Google Scholar 

  • A. Schult, Self-reversal of magnetization and chemical composition of titanomagnetites in basalts. Earth Planet. Sci. Lett. 4(1), 57–63 (1968)

    Article  ADS  Google Scholar 

  • J.C. Shao, M. Fuller, T. Tanimoto, J.R. Dunn, D.B. Stone, Spherical harmonic analyses of paleomagnetic data: The time-averaged geomagnetic field for the past 5 myr and the brunhes-matuyama reversal. J. Geophys. Res. 104(B3), 5015–5030 (1999)

    Article  ADS  Google Scholar 

  • R. Simitev, F. Busse, Prandtl-number dependence of convection-driven dynamos in rotating spherical fluid shells. J. Fluid Mech. 532, 365–388 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • B.S. Singer, K.A. Hoffman, R.S. Coe, L.L. Brown, B.R. Jicha, M.S. Pringle, A. Chauvin, Structural and temporal requirements for geomagnetic field reversal deduced from lava flows. Nature 434, 633–636 (2005)

    Article  ADS  Google Scholar 

  • P.J. Smith, Field reversal or self-reversal? Nature 229(5284), 378–380 (1971)

    Article  ADS  Google Scholar 

  • B. Sreenivasan, C. Jones, Azimuthal winds, convection and dynamo action in the polar regions of planetary cores. Geophys. Astrophys. Fluid Dyn. 100, 319–339 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  • F. Stacey, Physics of the Earth (Brookfield Press, Brisbane, 1992)

    Google Scholar 

  • J. Stoner, J. Channell, D. Hodell, C.D. Charles, A 580 kyr paleomagnetic record from the sub-antarctic south Atlantic (ocean drilling program site 1089). J. Geophys. Res. 108, 2244 (2003). doi:10.1029/2001JB001390

    Article  ADS  Google Scholar 

  • F. Takahashi, M. Matsushima, Y. Honkura, Simulations of a quasi-Taylor state geomagnetic field including polarity reversals on the Earth simulator. Science 309, 459–461 (2005)

    Article  ADS  Google Scholar 

  • F. Takahashi, M. Matsushima, Y. Honkura, A numerical study on magnetic polarity transition in an MHD dynamo model. Earth Planets Space 59, 665–673 (2007)

    ADS  Google Scholar 

  • F. Takahashi, M. Matsushima, Y. Honkura, Scale variability in convection-driven MHD dynamos at low Ekman number. Phys. Earth Planet. Inter. 167, 168–178 (2008)

    Article  ADS  Google Scholar 

  • F. Theyer, E. Herrero-Bervera, V. Hsu, The zonal harmonic model of polarity transitions: a test using successive reversals. J. Geophys. Res. 90, 1963–1982 (1985)

    Article  ADS  Google Scholar 

  • J.-P. Valet, E. Herrero-Bervera, Some characteristics of geomagnetic reversals inferred from detailed volcanic records. Compt. Ren. Geosci. 335, 79–90 (2003)

    Article  ADS  Google Scholar 

  • J.-P. Valet, L. Tauxe, B.M. Clement, Equatorial and mid-latitude records of the last geomagnetic reversal from the Atlantic ocean. Earth Planet. Sci. Lett. 94, 371–384 (1989)

    Article  ADS  Google Scholar 

  • J.-P. Valet, P. Tucholka, V. Courtillot, L. Meynadier, Palaeomagnetic constraints on the geometry of the geomagnetic field during reversals. Nature 356, 400–407 (1992)

    Article  ADS  Google Scholar 

  • J.-P. Valet, L. Meynadier, Y. Guyodo, Geomagnetic dipole strength and reversal rate over the past two million years. Nature 435, 802–805 (2005)

    Article  ADS  Google Scholar 

  • J.-P. Valet, G. Plenier, E. Herrero-Bervera, Geomagnetic excursions reflect an aborted polarity state. Earth Planet. Sci. Lett. 274, 472–478 (2008)

    Article  ADS  Google Scholar 

  • J. Vogt, B. Zieger, K.-H. Glassmeier, A. Stadelmann, M.-B. Kallenrode, M. Sinnhuber, H. Winkler, Energetic particles in the paleomagnetosphere: Reduced dipole configurations and quadrupolar contributions. J. Geophys. Res. 112, A06216 (2007). doi:10.1029/2006JA012224

    Article  Google Scholar 

  • J. Wicht, Inner-core conductivity in numerical dynamo simulations. Phys. Earth Planet. Inter. 132, 281–302 (2002)

    Article  ADS  Google Scholar 

  • J. Wicht, Palaeomagnetic interpretation of dynamo simulations. Geophys. J. Int. 162, 371–380 (2005)

    Article  ADS  Google Scholar 

  • J. Wicht, P. Olson, A detailed study of the polarity reversal mechanism in a numerical dynamo model. Geophys. Geochem. Geosyst. 5 (2004). doi:10.1029/2003GC000602

  • J. Wicht, A. Tilgner, Theory and modeling of planetary dynamos. Space Sci. Rev. 152, 501–542 (2010)

    Article  ADS  Google Scholar 

  • J. Wicht, S. Stellmach, H. Harder, Numerical models of the geodynamo: From fundamental Cartesian models to 3D simulations of field reversals, in Geomagnetic Field Variations—Space-Time Structure, Processes, and Effects on System Earth, ed. by H. Glassmeier, H. Soffel, J. Negendank (Springer, Berlin, 2009)

    Google Scholar 

  • J. Wicht, S. Stellmach, H. Harder, Numerical dynamo simulations–from basic concepts to realistic models, in Handbook of Geomathematics (Springer, Berlin, 2010)

    Google Scholar 

  • I. Williams, M. Fuller, Zonal harmonic models of reversal transition fields. J. Geophys. Res. 86(B12), 11657–11665 (1981)

    Article  ADS  Google Scholar 

  • P. Willis, B. Sreenivasan, D. Gubbins, Thermal core-mantle interaction: Exploring regimes for ‘locked’ dynamo action. Phys. Earth Planet. Inter. 165, 83–92 (2007)

    Article  ADS  Google Scholar 

  • H.-U. Worm, A link between geomagnetic reversals and events and glaciations. Earth Planet. Sci. Lett. 147, 55–67 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hagay Amit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amit, H., Leonhardt, R. & Wicht, J. Polarity Reversals from Paleomagnetic Observations and Numerical Dynamo Simulations. Space Sci Rev 155, 293–335 (2010). https://doi.org/10.1007/s11214-010-9695-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-010-9695-2

Keywords

Navigation