Skip to main content
Log in

Crustal Magnetic Fields of Terrestrial Planets

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Magnetic field measurements are very valuable, as they provide constraints on the interior of the telluric planets and Moon. The Earth possesses a planetary scale magnetic field, generated in the conductive and convective outer core. This global magnetic field is superimposed on the magnetic field generated by the rocks of the crust, of induced (i.e. aligned on the current main field) or remanent (i.e. aligned on the past magnetic field). The crustal magnetic field on the Earth is very small scale, reflecting the processes (internal or external) that shaped the Earth. At spacecraft altitude, it reaches an amplitude of about 20 nT. Mars, on the contrary, lacks today a magnetic field of core origin. Instead, there is only a remanent magnetic field, which is one to two orders of magnitude larger than the terrestrial one at spacecraft altitude. The heterogeneous distribution of the Martian magnetic anomalies reflects the processes that built the Martian crust, dominated by igneous and cratering processes. These latter processes seem to be the driving ones in building the lunar magnetic field. As Mars, the Moon has no core-generated magnetic field. Crustal magnetic features are very weak, reaching only 30 nT at 30-km altitude. Their distribution is heterogeneous too, but the most intense anomalies are located at the antipodes of the largest impact basins. The picture is completed with Mercury, which seems to possess an Earth-like, global magnetic field, which however is weaker than expected. Magnetic exploration of Mercury is underway, and will possibly allow the Hermean crustal field to be characterized. This paper presents recent advances in our understanding and interpretation of the crustal magnetic field of the telluric planets and Moon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M.H. Acuña, J.E.P. Connerney, P. Wasilewski, R.P. Lin, K.A. Anderson, C.W. Carlson, J. McFadden, D.W. Curtis, H. Réme, A. Cros, J.L. Médale, J.A. Sauvaud, C. d’Uston, S.J. Bauer, P. Cloutier, M. Mayhew, N.F. Ness, Mars Observer magnetic fields investigation. J. Geophys. Res. 97, 7799–7814 (1992)

    Article  ADS  Google Scholar 

  • M.H. Acuña, J.E.P. Connerney, N.F. Ness, R.P. Lin, D. Mitchell, C.W. Carlson, J. McFadden, K.A. Anderson, H. Reme, C. Mazelle, D. Vignes, P. Wasilewski, P. Cloutier, Global distribution of crustal magnetization discovered by the Mars global surveyor MAG/ER experiment. Science 284 (1999). doi:10.1126/science.284.5415.790

  • M.H. Acuña, J.E.P. Connerney, P. Wasilewski, R.P. Lin, D. Mitchell, K.A. Anderson, C.W. Carlson, J. McFadden, H. Rème, C. Mazelle, D. Vignes, S.J. Bauer, P. Cloutier, N.F. Ness, Magnetic field of Mars: Summary of results from the aerobraking and mapping orbits. J. Geophys. Res. 106 (2001). doi:10.1029/2000JE001404

  • O. Aharonson, M.T. Zuber, S.C. Solomon, Crustal remanence in an internally magnetized non-uniform shell: a possible source for Mercury’s magnetic field? Earth Planet. Sci. Lett. 218, 261–268 (2004)

    Article  ADS  Google Scholar 

  • A.L. Albee, R.E. Arvidson, F. Palluconi, T. Thorpe, Overview of the Mars global surveyor mission. J. Geophys. Res. 106 (2001). doi:10.1029/2000JE001306

  • B.J. Anderson, M.H. Acuña, H. Korth, M.E. Purucker, C.L. Johnson, J.A. Slavin, S.C. Solomon, R.L. McNutt, The structure of Mercury’s magnetic field from MESSENGER’s first flyby. Science 321, 82–85 (2008). doi:10.1126/science.1159081

    Article  ADS  Google Scholar 

  • Anderson et al., Space Sci. Rev. (2009, this issue)

  • J. Arkani-Hamed, A 50-degree spherical harmonic model of the magnetic field of Mars. J. Geophys. Res. 106 (2001a). doi:10.1029/2000JE001365

  • J. Arkani-Hamed, Paleomagnetic pole positions and pole reversals of Mars. Geophys. Res. Lett. 28 (2001b). doi:10.1029/2001GL012928

  • J. Arkani-Hamed, A coherent model of the crustal magnetic field of Mars. J. Geophys. Res. 109 (2004). doi:10.1029/2004JE002265

  • N. Artemieva, L.L. Hood, B.A. Ivanov, Impact demagnetization of the Martian crust: Primaries versus secondaries. Geophys. Res. Lett. 32 (2005). doi:10.1029/2005GL024385

  • Baumjohann et al., Space Sci. Rev. (2009, this issue)

  • A.B. Binder, Lunar Prospector: Overview. Science 281, 1475–1476 (1998)

    Article  ADS  Google Scholar 

  • R.J. Blakely, Potential Theory in Gravity and Magnetic Applications (Cambridge University Press, Cambridge, 1995), p. 441

    Book  Google Scholar 

  • R.J. Blakely, T.M. Brocher, R.E. Wells, Subduction zone magnetic anomalies and implications for hydrated forearc mantle. Geology 33, 445–448 (2005)

    Article  ADS  Google Scholar 

  • I. Blanco-Montenegro, R. De Ritis, M. Chiappini, Imaging and modelling the subsurface structure of volcanic calderas with high-resolution aeromagnetic data at vulcano (Aeolian islands, Italy). Bull. Volcanol. 69 (2007). doi:10.1007/s00445-006-0100-7

  • A. Boesswetter, U. Auster, I. Richter, M. Fränz, B. Langlais, S. McKenna-Lawlor, S. Simon, U. Motschmann, K.H. Glassmeier, N.J.T. Edberg, R. Lundin, Rosetta swing-by at Mars - An analysis of the ROMAP measurements in comparison with results of 3d multi-ion hybrid simulations and MEX/ASPERA-3 data. Ann. Geophys. 27, 2383–2398 (2009)

    Article  ADS  Google Scholar 

  • J.C. Cain, D.R. Schmitz, L. Muth, Small-scale features in the Earth’s magnetic field observed by Magsat. J. Geophys. Res. 89, 1070–1076 (1984)

    Article  ADS  Google Scholar 

  • J.C. Cain, B.B. Ferguson, D. Mozzoni, An n=90 internal potential function of the Martian crustal magnetic field. J. Geophys. Res. 108 (2003). doi:10.1029/2000JE001487

  • A. Chambodut, I. Panet, M. Mandea, M. Diament, M. Holschneider, O. Jamet, Wavelet frames: an alternative to spherical harmonic representation of potential fields. Geophys. J. Int. 163 (2005). doi:10.1111/j.1365-246X.2005.02754.x

  • U.R. Christensen, A deep dynamo generating Mercury’s magnetic field. Nature 444 (2006). doi:10.1038/nature05342

  • S.M. Cisowski, M. Fuller, The effect os shock on the magnetism of terrestrial rocks. J. Geophys. Res. 83, 3441–3458 (1978)

    Article  ADS  Google Scholar 

  • D. Clark, Magnetic petrophysics and magnetic petrology: aids to geological interpretation of magnetic surveys. AGSO J. Aust. Geol. Geophys. 2, 83–103 (1997)

    Google Scholar 

  • Y. Cohen, J. Achache, Contribution of induced and remanent magnetization to long-wavelength oceanic magnetic anomalies. J. Geophys. Res. 99, 2943–2954 (1994)

    Article  ADS  Google Scholar 

  • F.R. Colomb, C. Alonso, C. Hofmann, I. Nollmann, SAC-C mission, an example of international cooperation. Adv. Space Res. 34 (2004). doi:10.1016/j.asr.2003.10.039

  • J.E.P. Connerney, M.H. Acuna, P.J. Wasilewski, N.F. Ness, H. Reme, C. Mazelle, D. Vignes, R.P. Lin, D.L. Mitchell, P.A. Cloutier, Magnetic lineations in the ancient crust of Mars. Science 284, 794 (1999)

    Article  ADS  Google Scholar 

  • J.E.P. Connerney, M.H. Acuña, P.J. Wasilewski, G. Kletetschka, N.F. Ness, H. Rème, R.P. Lin, D.L. Mitchell, The global magnetic field of Mars and implications for crustal evolution. Geophys. Res. Lett. 28 (2001). doi:10.1029/2001GL013619

  • J.E.P. Connerney, M.H. Acuña, N.F. Ness, T. Spohn, G. Schubert, Mars crustal magnetism. Space Sci. Rev. 111 (2004). doi:10.1023/B:SPAC.0000032719.40094.1d

  • J.E.P. Connerney, M.H. Acuña, N.F. Ness, G. Kletetschka, D.L. Mitchell, R.P. Lin, H. Reme, Tectonic implications of Mars crustal magnetism. Proc. Nat. Acad. Sci. 102 (2005). doi:10.1073/pnas.0507469102

  • B. Corner, W.A. Wilsher, Structure of the Witwatersrand basin derived from interpretation of aeromagnetic and gravity data. Exploration ’87 Geol. Surv. Can. Spec. 3, 523–546 (1989)

    Google Scholar 

  • J. Counil, Y. Cohen, J. Achache, The global continent-ocean magnetization contrast. Earth Planet. Sci. Lett. 103, 354–364 (1991)

    Article  ADS  Google Scholar 

  • D.A. Crawford, P.H. Schultz, Electromagnetic properties of impact-generated plasma, vapor and debris. Int. J. Impact Eng. 23, 169–180 (1999)

    Article  Google Scholar 

  • S.K. Croft, Cratering flow fields – Implications for the excavation and transient expansion stages of crater formation, in Proc. Lunar Planet. Sci. Conf., vol. 11, 1980, pp. 2347–2378

  • S.S. Dolginov, L.N. Zhuzgov, The magnetic field and magnetosphere of the planet Mars. Planet. Space Sci. 39, 1493–1510 (1991)

    Article  ADS  Google Scholar 

  • S.S. Dolginov, L.N. Zhuzgov, N.V. Pushkov, Preliminary report on geomagnetic measurements on the third Soviet artificial Earth satellite. Planet. Space Sci. 5, 244–247 (1961)

    Article  ADS  Google Scholar 

  • D.J. Dunlop, O. Özdemir, Rock Magnetism: Fundamentals and Frontiers (Cambridge University Press, Cambridge, 1997), p. 573

    Book  Google Scholar 

  • D.J. Dunlop, O. Özdemir, Magnetizations of rocks and minerals, in Treatise on Geophysics, vol. 5, ed. by M. Kono (Elsevier, Amsterdam, 2007), pp. 277–336

    Chapter  Google Scholar 

  • J. Dyment, J. Arkani-Hamed, Equivalent source magnetic dipoles revisited. Geophys. Res. Lett. 25, 2003–2006 (1998)

    Article  ADS  Google Scholar 

  • J. Dyment, S.C. Cande, J. Arkani-Hamed, Skewness of marine magnetic anomalies created between 85 and 40 Ma in the Indian ocean. J. Geophys. Res. 99, 24121–24134 (1995)

    Article  ADS  Google Scholar 

  • ETOPO5, Data Announcement 88-MGG-02, Digital relief of the surface of the Earth. NOAA. National Geophysical Data Center, Boulder, Colorado, USA (1988)

  • B.J. Fegley, G. Klingelhfer, K. Lodders, T. Widemann, Geochemistry of surface-atmosphere interactions on Venus, in Venus II, ed. by W. Boucher, D. Hunten, R. Phillips (Univ. of Arizona Press, Tucson, 1997), pp. 591–636

    Google Scholar 

  • J.J. Frawley, P.T. Taylor, Paleo-pole positions from martian magnetic anomaly data. Icarus 172, 316–327 (2004)

    Article  ADS  Google Scholar 

  • H.V. Frey, Ages of very large impact basins on Mars: Implications for the late heavy bombardment in the inner solar system. Geophys. Res. Lett. (2008). doi:10.1029/2008GL033515

    Google Scholar 

  • E. Friis-Christensen, H. Lühr, G. Hulot, A constellation to study the Earth’s magnetic field. Earth Planets Space 58, 351–358 (2006)

    ADS  Google Scholar 

  • I. Garrick-Bethell, B.P. Weiss, D.L. Shuster, J. Buz, Early lunar magnetism. Science 323 (2009). doi:10.1126/science.1166804

  • J. Gattacceca, L. Berthe, M. Boustie, F. Vadeboin, P. Rochette, T. de Resseguier, On the efficiency of shock magnetization processes. Phys. Earth Planet. Int. 166 (2008). doi:10.1016/j.pepi.2007.09.005

  • G. Giampieri, A. Balogh, Mercury’s thermoelectric dynamo model revisisted. Planet. Space Sci. 50, 757–762 (2002)

    Article  ADS  Google Scholar 

  • W. Gilbert, De magnete (Translation by Silvanus Phillips Thompson and the Gilbert Club, Chiswick Press, 1900, 337 pp., London, UK, 1600)

  • R.W. Girdler, P. Taylor, J.J. Frawley, A possible impact origin for the Bangui magnetic anomaly (Central Africa). Tectonophysics 212, 45–58 (1992)

    Article  ADS  Google Scholar 

  • T. Gold, S. Sorer, Cometary impact and the magnetization of the Moon. Planet. Space Sci. 24, 45–54 (1976)

    Article  ADS  Google Scholar 

  • R.A.F. Grieve, M. Pilkington, The signature of terrestrial impacts. AGSO J. Geol. Geophys. 16, 399–420 (1996)

    Google Scholar 

  • R.E. Grimm, P.C. Hess, The crust of Venus, in Venus II, ed. by W. Boucher, D. Hunten, R. Phillips (Univ. of Arizona Press, Tucson, 1997), pp. 1205–1244

    Google Scholar 

  • B.C. Hahn, S.M. McLennan, G.J. Taylor, W.V. Boynton, J.M. Dohn, M.J. Finch, D.K. Hamara, D.M. Janes, S. Karunatillake, J.M. Keller, K.E. Kerry, A.E. Metzger, R.M.. Williams, Mars Odyssey Gamma Ray Spectrometer elemental abundances and apparent relative surface age: implications for Martian crustal evolution. J. Geophys. Res. 112 (2007). doi:10.1029/2006JE002821

  • G.V. Haines, Spherical cap harmonic analysis. J. Geophys. Res. 90, 2583–2591 (1985)

    Article  ADS  Google Scholar 

  • M.H. Heimpel, J.M. Aurnou, F.M. Al-Shamali, N. Gomez Perez, A numerical study of dynamo action as a function of spherical shell geometry. Earth Planet. Sci. Lett. 236 (2005). doi:10.1016/j.epsl.2005.04.032

  • L.L. Hood, N.A. Artemieva, Antipodal effects of lunar basin-forming impacts: initial 3D simulations and comparisons with observations. Icarus 193 (2008). doi:10.1016/j.icarus.2007.08.023

  • L.L. Hood, Z. Huang, Formation of magnetic anomalies antipodal to lunar impact basins – Two-dimensional model calculations. J. Geophys. Res. 96, 9837–9846 (1991)

    Article  ADS  Google Scholar 

  • L.L. Hood, A. Zakharian, Mapping and modeling of magnetic anomalies in the northern polar region of Mars. J. Geophys. Res. 106 (2001). doi:10.1029/2000JE001304

  • L.L. Hood, N.C. Richmond, E. Pierazzo, P. Rochette, Distribution of crustal magnetic fields on Mars: Shock effects of basin-forming impacts. Geophys. Res. Lett. 30 (2003). doi:10.1029/2002GL016657

  • L.L. Hood, C.N. Young, N.C. Richmond, K.P. Harrison, Modeling of major martian magnetic anomalies: Further evidence for polar reorientations during the Noachian. Icarus 177 (2005). doi:10.1016/j.icarus.2005.02.008

  • Hulot et al., Space Sci. Rev. (2009, this issue)

  • G. Hulot, N. Olsen, E. Thébault, K. Hemant, Crustal concealing of small scale core field secular variation. Geophys. J. Int. 177 (2009). doi:10.1111/j.1365-246X.2009.04119.x

  • J. Jankowski, C. Sucksdorff, Guide for Magnetic Measurements and Observatory Practice (Int. Assoc. Geomag. Aeronomy, Warsaw, 1996), p. 235

    Google Scholar 

  • J.V. Korhonen, J.D. Fairhead, M. Hamoudi, K. Hemant, V. Lesur, M. Mandea, S. Maus, M.E. Purucker, D. Ravat, T. Sazonova, E. Thébault, Magnetic anomaly map of the world—Carte des anomalies magnétiques du monde, Scale: 1:50,000,000, 1st edition. Commission for the Geological Map of the World (2007)

  • R.A. Langel, Global magnetic anomaly maps derived from POGO spacecraft data. Phys. Earth Planet. Int. 62, 208–230 (1990)

    Article  ADS  Google Scholar 

  • B. Langlais, M.E. Purucker, A polar magnetic paleopole associated with Apollinaris Patera. Planet. Space Sci. 55 (2007). doi:10.1016/j.pss.2006.03.008

  • B. Langlais, Y. Quesnel, New perspectives on Mars’ crustal magnetic field. Comptes Rendus Geosci. 340 (2008). doi:10.1016/j.crte.2008.08.006e

  • B. Langlais, M.E. Purucker, M. Mandea, Crustal magnetic field of Mars. J. Geophys. Res. 109 (2004). doi:10.1029/2003JE002048

  • B. Langlais, F. Leblanc, T. Fouchet, S. Barabash, D. Breuer, E. Chassefière, A. Coates, V. Dehant, F. Forget, H. Lammer, S. Lewis, M. Lopez-Valverde, M. Mandea, M. Menvielle, A. Pais, M. Paetzold, P. Read, C. Sotin, P. Tarits, S. Vennerstrom, G. Branduardi-Raymont, G. Cremonese, J.G.M. Merayo, T. Ott, H. Rème, J.G. Trotignon, J.E. Walhund, Mars Environment and Magnetic Orbiter: model payload. Exp. Astron. 22 (2009). doi:10.1007/s10686-008-9101-1

  • F. Leblanc, B. Langlais, T. Fouchet, S. Barabash, D. Breuer, E. Chassefière, A. Coates, V. Dehant, F. Forget, H. Lammer, S. Lewis, M. Lopez-Valverde, M. Mandea, M. Menvielle, A. Pais, M. Paetzold, P. Read, C. Sotin, P. Tarits, S. Vennerstrom, Mars environment and magnetic orbiter: Science and measurement objectives. Astrobiology (2009). doi:10.1089/AST.2007.022

    Google Scholar 

  • V. Lesur, Introducing localized constraints in global geomagnetic field modelling. Earth Planets Space 58, 477–483 (2006)

    ADS  Google Scholar 

  • V. Lesur, D. Gubbins, Using geomagnetic secular variation to separate remanent and induced sources of the crustal magnetic field. Geophys. J. Int. 142, 889–897 (2000)

    Article  ADS  Google Scholar 

  • V. Lesur, A. Jackson, Exact solutions for internally induced magnetization in a shell. Geophys. J. Int. 140, 453–459 (2000)

    Article  ADS  Google Scholar 

  • V. Lesur, S. Maus, A global lithospheric magnetic field model with reduced noise level in the polar regions. Geophys. Res. Lett. 33 (2006). doi:10.1029/2006GL025826

  • V. Lesur, I. Wardinski, M. Rother, M. Mandea, GRIMM: the GFZ Reference Internal Magnetic Model based on vector satellite and observatory data. Geophys. J. Int. 173 (2008). doi:10.1111/j.1365-246X.2008.03724.x

  • R.J. Lillis, H.V. Frey, M. Manga, Rapid decrease in Martian crustal magnetization in the Noachian era: Implications for the dynamo and climate of early Mars. Geophys. Res. Lett. 35 (2008a). doi:10.1029/2008GL034338

  • R.J. Lillis, H.V. Frey, M. Manga, D.L. Mitchell, R.P. Lin, M.H. Acuña, S.W. Bougher, An improved crustal magnetic field map of Mars from electron reflectometry: Highland volcano magmatic history and the end of the martian dynamo. Icarus 194 (2008b). doi:10.1016/j.icarus.2007.09.032

  • R.J. Lillis, J. Dufek, J.E. Bleacher, M. Manga, Demagnetization of crust by magmatic intrusion near the arsia mons volcano: Magnetic and thermal implications for the development of the tharsis province, mars. J. Volcanol. Geotherm. Res. (2009, in press). doi:10.1016/j.jvolgeores.2008.12.007

  • K. Lodders, J.B. Fegley, The Planetary Scientist’s Companion (Oxford University Press, New York, 1998), p. 371

    Google Scholar 

  • P. Lognonné, J. Gagnepain-Beyneix, H. Chenet, A new seismic model of the Moon: implications for structure, thermal evolution and formation of the Moon. Earth Planet. Sci. Lett. 211 (2003). doi:10.1016/S0012-821X(03)00172-9

  • M. Mandea, B. Langlais, Observatory crustal magnetic biases during MAGSAT and Ørsted satellite missions. Geophys. Res. Lett. 29 (2002). doi:10.1029/2001GL013693

  • M. Mandea, M.E. Purucker, Observing, modeling, and interpreting magnetic fields of the solid Earth. Surv. Geophys. 26 (2005). doi:10.1007/s10712-005-3857-x

  • M. Mandea, E. Thébault, The Changing Faces of the Earth’s Magnetic Field (Commission for The Geological Map of the World, France, 2007), p. 49

    Google Scholar 

  • S. Maus, V. Haak, Magnetic field annihilators: invisible magnetization at the magnetic equator. Geophys. J. Int. 155, 509–513 (2003)

    Article  ADS  Google Scholar 

  • S. Maus, M. Rother, R. Holme, H. Lühr, N. Olsen, V. Haak, First scalar magnetic anomaly map from champ satellite data indicates weak lithospheric field. Geophys. Res. Lett. 29 (2002). doi:10.1029/2001GL013685

  • S. Maus, H. Lühr, M. Rother, K. Hemant, G. Balasis, P. Ritter, C. Stolle, Fifth-generation lithospheric magnetic field model from CHAMP satellite measurements. Geochem., Geophys., Geosyst. 8 (2007). doi:10.1029/2006GC001521

  • S. Maus, F. Yin, H. Lühr, C. Manoj, M. Rother, J. Rauberg, I. Michaelis, C. Stolle, R.D. Müller, Resolution of direction of oceanic magnetic lineations by the sixth-generation lithospheric magnetic field model from CHAMP satellite magnetic measurements. Geochem., Geophys., Geosyst. 9 (2008). doi:10.1029/2008GC001949

  • C. Mayer, T. Maier, Separating inner and outer Earth’s magnetic field from CHAMP satellite measurements by means of vector scaling functions and wavelet. Geophys. J. Int. 167 (2006). doi:10.1111/j.1365-246X.2006.03199.x

  • M.A. Mayhew, Inversion of satellite magnetic anomaly data. J. Geophys. 45, 119–128 (1979)

    Google Scholar 

  • M.G. McLeod, Spatial and temporal power spectra of the geomagnetic field. J. Geophys. Res. 101, 2745–2763 (1996)

    Article  ADS  Google Scholar 

  • C. Mével, Serpentinization of abyssal peridotites at mid-ocean ridges. Comptes Rendus Geosci. 335, 825–852 (2003). doi:10.1016/j.crte.2003.08.006

    Article  ADS  Google Scholar 

  • C.A.E. Milburya, S.E. Smrekar, C.A. Raymond, G. Schubert, Lithospheric structure in the eastern region of Mars’ dichotomy boundary. Planet. Space Sci. 55 (2007). doi:10.1016/j.pss.2006.03.009s

  • D.L. Mitchell, R.P. Lin, C. Mazelle, H. Rème, P.A. Cloutier, J.E.P. Connerney, M.H. Acuña, N.F. Ness, Probing Mars’ crustal magnetic field and ionosphere with the MGS Electron Reflectometer. J. Geophys. Res. 106 (2001). doi:10.1029/2000JE001435

  • D.L. Mitchell, R.J. Lillis, R.P. Lin, J.E.P. Connerney, M.H. Acuña, A global map of Mars’ crustal magnetic field based on electron reflectometry. J. Geophys. Res. 112 (2007). doi:10.1029/2005JE002564

  • D.L. Mitchell, J.S. Halekas, R.P. Lin, S. Frey, L.L. Hood, M.H. Acuña, A. Binder, Global mapping of lunar crustal magnetic fields by Lunar Prospector. Icarus 194 (2008). doi:10.1016/j.icarus.2007.10.027

  • D. Moehlmann, The question of a Martian planetary magnetic field. Adv. Space Res. 12, 213–217 (1992)

    Article  ADS  Google Scholar 

  • D. Moehlmann, W. Riedler, J. Rustenbach, K. Schwingenschuh, J. Kurths, U. Motschmann, T. Roatsch, K. Sauer, H.T.M. Lichtenegger, The question of an internal Martian magnetic field. Planet. Space Sci. 39, 83–88 (1991)

    Article  ADS  Google Scholar 

  • P.S. Mohit, J. Arkani-Hamed, Impact demagnetization of the martian crust. Icarus 168 (2004). doi:10.1016/j.icarus.2003.12.005

  • W.D. Mooney, G. Laske, T.G. Masters, CRUST 5.1: A global crustal model at 5 degrees x 5 degrees. J. Geophys. Res. 103, 727–747 (1998)

    Article  ADS  Google Scholar 

  • M. Muundjua, R.J. Hart, S.A. Gilder, L. Carporzen, A. Galdeano, Magnetic imaging of the vredefort impact crater, south Africa. Earth Planet. Sci. Lett. 261 (2007). doi:10.1016/j.epsl.2007.07.044

  • M. Muundjua, A. Galdeano, L. Carporzen, S.A. Gilder, R.J. Hart, M.A.G. Andreoli, M. Tredoux, Reply to scientific comment by W.U. Reimold, R.L. Gibson and H. Henkel on Muundjua et al. (2007), magnetic imaging of the vredefort impact crater, south Africa, epsl 261, pp. 456–468. Earth Planet. Sci. Lett. 273 (2008). doi:10.1016/j.epsl.2008.06.044

  • H.C. Nataf, Y. Ricard, 3SMAC: An a priori tomographic model of the upper mantle based on geophysical modeling. Phys. Earth Planet. Int. 95, 101–122 (1996)

    Article  ADS  Google Scholar 

  • J. Needham, Science and civilisation in China, vol. 4 Physics and Physical Technology, Part 1 Physics (Cambridge University Press, Cambridge, 1962), pp. 314–334

  • N.F. Ness, The magnetic fields of Mercury, Mars, and moon. Ann. Rev. Earth Planet. Sci. 7, 249–288 (1979)

    Article  ADS  Google Scholar 

  • N.F. Ness, K.W. Behannon, R.P. Lepping, Y.C. Whang, Magnetic field of Mercury confirmed. Nature 255, 204 (1975)

    Article  ADS  Google Scholar 

  • F. Nimmo, Why does Venus lack a magnetic field? Geology 30, 989–990 (2002)

    Article  ADS  Google Scholar 

  • N. Olsen, R. Holme, G. Hulot, T. Sabaka, T. Neubert, L. Toffner-Clausen, F. Primdahl, J. Jorgensen, J.-M. Leger, D. Barraclough, J. Bloxham, J. Cain, C. Constable, V. Golovkov, A. Jackson, P. Kotze, B. Langlais, S. Macmillan, M. Mandea, J. Merayo, L. Newitt, M. Purucker, T. Risbo, M. Stampe, A. Thomson, C. Voorhies, Orsted initial field model. Geophys. Res. Lett. 27(22), 3607–3610 (2000)

    Article  ADS  Google Scholar 

  • N. Olsen, M. Mandea, Rapidly changing flows in the Earth’s core. Nature Geosci. 1 (2008). doi:10.1038/ngeo203

  • R.L. Parker, Ideal bodies for Mars magnetics. J. Geophys. Res. 108 (2003). doi:10.1029/2001JE001760

  • R.L. Parker, L. Shure, J.A. Hildebrand, The application of inverse theory to seamount magnetism. Rev. Geophys. 25, 17–40 (1987)

    Article  ADS  Google Scholar 

  • PASSC, Planetary and Space Science Centre, Earth impact database, 2009. http://www.unb.ca/passc/impactdatabase/

  • V.G. Perminov, The Difficult Road to Mars: A Brief History of Mars Exploration in the Soviet Union (Monographs in aerospace history; no. 15, NASA Headquarters, Washington, D.C., 1999)

  • M.E. Purucker, A global model of the internal magnetic field of the Moon based on Lunar Prospector magnetometer observations. Icarus 197 (2008). doi:10.1016/j.icarus.2008.03.016

  • M.E. Purucker, T. Ishihara, Magnetic images of the Sumatra region crust. EOS, Trans. Am. Geophys. Union 86 (2005). doi:10.1029/2005EO100002

  • M.E. Purucker, K. Whaler, Crustal magnetism, in Treatise on Geophysics, vol. 5, Geomagnetism, ed. by M. Kono (Elsevier, Amsterdam, 2007), pp. 195–237

    Chapter  Google Scholar 

  • M.E. Purucker, T.J. Sabaka, R.A. Langel, Conjugate gradient analysis: A new tool for studying satellite magnetic data sets. Geophys. Res. Lett. 23, 507–510 (1996)

    Article  ADS  Google Scholar 

  • M.E. Purucker, R.A. Langel, M. Rajaram, C. Raymond, Global magnetization models with a priori information. J. Geophys. Res. 103, 2563–2584 (1998)

    Article  ADS  Google Scholar 

  • M.E. Purucker, D. Ravat, H. Frey, C. Voorhies, T. Sabaka, M.H. Acuña, An altitude-normalized magnetic map of Mars and its interpretation. Geophys. Res. Lett. 27 (2000). doi:10.1029/2000GL000072

  • M.E. Purucker, B. Langlais, N. Olsen, G. Hulot, M. Mandea, The southern edge of cratonic North America: Evidence from new satellite magnetometer observations. Geophys. Res. Lett. 29 (2002). doi:10.1029/2001GL0136450

  • M.E. Purucker, T.J. Sabaka, S.C. Solomon, B.J. Anderson, H. Korth, M.T. Zuber, G.A. Neumann, Mercury’s internal magnetic field: Constraints on large- and small-scale fields of crustal origin. Earth Planet. Sci. Lett. (2009). doi:10.1016/j.epsl.2008.12.017

    Google Scholar 

  • Y. Quesnel, B. Langlais, C. Sotin, Local inversion of magnetic anomalies: Implication for Mars’ crustal evolution. Planet. Space Sci. 55 (2007). doi:10.1016/j.pss.2006.02.004

  • Y. Quesnel, B. Langlais, C. Sotin, A. Galdéano, Modeling and inversion of local magnetic anomalies. J. Geophys. Eng. 5 (2008). doi:10.1088/1742-2132/5/4/003

  • Y. Quesnel, C. Sotin, B. Langlais, S. Costin, M. Mandea, M. Gottschalk, J. Dyment, Serpentinization of the martian crust during Noachian. Earth Planet. Sci. Lett. 277 (2009). doi:10.1016/j.epsl.2008.10.012

  • C.A. Raymond, J.L. Labrecque, Magnetization of the oceanic crust: thermoremanent magnetization or chemical remanent magnetization. J. Geophys. Res. 92, 8077–8088 (1987)

    Article  ADS  Google Scholar 

  • R.D. Regan, J.C. Cain, W.M. Davis, Global magnetic anomaly map. J. Geophys. Res. 80, 794–802 (1975)

    Article  ADS  Google Scholar 

  • C. Reigber, H. Lühr, S. P., CHAMP Mission Status. Adv. Space Res. 30 (2002). doi:10.1016/S0273-1177(02)00276-4

  • W.U. Reimold, R.L. Gibson, H. Henkel, Scientific comment on Muundjua et al., 2007: Magnetic imaging of the Vredefort impact crater, South Africa, EPSL 261, 456–468. Earth Planet. Sci. Lett. 273 (2008). doi:10.1016/j.epsl.2008.06.046

  • N.C. Richmond, L.L. Hood, A preliminary global map of the vector lunar crustal magnetic field based on Lunar Prospector magnetometer data. J. Geophys. Res. 113 (2008). doi:10.1029/2007JE002933

  • W. Riedler, K. Schwingenschuh, D. Moehlmann, V.N. Oraevskii, E. Eroshenko, J. Slavin, Magnetic fields near Mars – First results. Nature 341, 604–607 (1989)

    Article  ADS  Google Scholar 

  • J.H. Roberts, R.J. Lillis, M. Manga, Giant impact on early Mars and the cessation of the Martian dynamo. J. Geophys. Res. 114 (2009). doi:10.1029/2008JE003287

  • P. Rochette, G. Fillion, R. Ballou, F. Brunet, B. Ouladdiaf, L.L. Hood, High pressure magnetic transition in pyrrhotite and impact demagnetization on Mars. Geophys. Res. Lett. 30 (2003). doi:10.1029/2003GL017359

  • S.K. Runcorn, On the interpretation of lunar magnetism. Phys. Earth Planet. Int. 10, 327–335 (1975)

    Article  ADS  Google Scholar 

  • T.J. Sabaka, N. Olsen, M.E. Purucker, Extending comprehensive models of the Earth’s magnetic field with Ørsted and CHAMP data. Geophys. J. Int. 159 (2004). doi:10.1111/j.1365-246X.2004.02421.x

  • J.A. Slavin, K. Schwingenschuh, W. Riedler, E. Eroshenko, The solar wind interaction with Mars – Mariner 4, Mars 2, Mars 3, Mars 5, and PHOBOS 2 observations of bow shock position and shape. J. Geophys. Res. 96, 11235 (1991)

    Article  ADS  Google Scholar 

  • E.J. Smith, L.J. Davis, P.J. Coleman Jr., D.E. Jones, Magnetic field measurements near Mars. Science 149, 1241–1242 (1965)

    Article  ADS  Google Scholar 

  • D. Smith, G. Neumann, R.E. Arvidson, E.A. Guinness, S.Slavney, Mars global surveyor laser altimeter mission experiment gridded data record. NASA Planetary Data System, MGS-M-MOLA-5-MEGDR-L3-V1.0 (2003)

  • S.C. Solomon, R.L. McNutt Jr., T.R. Watters, D.J. Lawrence, W.C. Feldman, J.W. Head, S.M. Krimigis, S.L. Murchie, R.J. Phillips, J.A. Slavin, M.T. Zuber, Return to Mercury: A global perspective on MESSENGER’s first Mercury flyby. Science 321, 59–62 (2008)

    Article  ADS  Google Scholar 

  • L.J. Srnka, Magnetic dipole moment of a spherical shell with TRM acquired in a field of internal origin. Phys. Earth Planet. Int. 11, 184–190 (1976)

    Article  ADS  Google Scholar 

  • S. Stanley, J. Bloxham, W.E. Hutchison, M.T. Zuber, Thin shell dynamo models consistent with Mercury’s weak observed magnetic field [rapid communication]. Earth Planet. Sci. Lett. 234 (2005). doi:10.1016/j.epsl.2005.02.040

  • A. Stephenson, Crustal remanence and the magnetic moment of Mercury. Earth Planet. Sci. Lett. 28, 454–458 (1976)

    Article  ADS  Google Scholar 

  • D.J. Stevenson, Mercury’s magnetic field – A thermoelectric dynamo? Earth Planet. Sci. Lett. 82, 114–120 (1987)

    Article  ADS  Google Scholar 

  • D.J. Stevenson, Planetary magnetic fields. Earth Planet. Sci. Lett. 208 (2003). doi:10.1016/S0012-821X(02)01126-3

  • D.J. Stevenson, T. Spohn, G. Schubert, Magnetism and thermal evolution of terrestrial planets. Icarus 54, 466–489 (1983)

    Article  ADS  Google Scholar 

  • F. Takahashi, M. Matsushima, Dipolar and non-dipolar dynamos in a thin shell geometry with implications for the magnetic field of Mercury. Geophys. Res. Lett. 33 (2006). doi:10.1029/2006GL025792

  • E. Thébault, A proposal for regional modelling at the Earth’s surface, R-SCHA2D. Geophys. J. Int. 174 (2008). doi:10.1111/j.1365-246X.2008.03823.x

  • E. Thébault, L. Gaya-Piqué, Applied comparisons between SCHA and R-SCHA regional modeling techniques. Geochem., Geophys., Geosyst. 9 (2008). doi:10.1029/2008GC001953

  • E. Thébault, J.J. Schott, M. Mandea, Revised Spherical Cap Harmonic Analysis (R-SCHA): Validation and Properties. J. Geophys. Res. 111 (2006a). doi:10.1029/2005JB003836

  • E. Thébault, J.J. Schott, M. Mandea, Modeling the lithospheric magnetic field over France by means of revised spherical cap harmonic analysis (R-SCHA). J. Geophys. Res. 111 (2006b). doi:10.1029/2005JB004110

  • E. Thébault, K. Hemant, G. Hulot, N. Olsen, On the geographical distribution of induced time-varying crustal magnetic fields. Geophys. Res. Lett. 36 (2009). doi:10.1029/2008GL036416

  • J.M. Torta, L.R. Gaya-Piqué, A. De Santis, Spherical cap harmonic analysis of the geomagnetic field with application for aeronautical mapping, in Geomagnetics for Aeronautical Safety: A Case Study in and Around the Balkans, ed. by J.L. Rasson, T. Delipetrov (Springer, Dordrecht, 2006), pp. 291–307

    Chapter  Google Scholar 

  • S. Vennerstrom, N. Olsen, M.E. Purucker, M.H. Acuña, J.C. Cain, The magnetic field in the pile-up region at Mars, and its variation with the solar wind. Geophys. Res. Lett. 30 (2003). doi:10.1029:2003GL016883

  • F.J. Vine, D.H. Matthews, Magnetic anomalies over oceanic ridges. Nature 199, 947–949 (1963)

    Article  ADS  Google Scholar 

  • Weiss et al., Space Sci. Rev. (2009, this issue)

  • P. Wessel, W.H.F. Smith, Free software helps map and display data. EOS, Trans. Am. Geophys. Union 72, 441 (1991)

    Article  ADS  Google Scholar 

  • K.A. Whaler, R.A. Langel, Minimal crustal magnetization from satellite data. Phys. Earth Planet. Int. 48, 303–319 (1996)

    Article  ADS  Google Scholar 

  • K.A. Whaler, M.E. Purucker, A spatially continuous magnetization model for Mars. J. Geophys. Res. 110 (2005). doi:10.1029/2004JE002393

  • J. Wicht, M. Mandea, F. Takahashi, U.R. Christensen, M. Matsushima, B. Langlais, The origin of Mercury’s internal magnetic field. Space Sci. Rev. 132 (2007). doi:10.1007/s11214-007-9280-5

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoit Langlais.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langlais, B., Lesur, V., Purucker, M.E. et al. Crustal Magnetic Fields of Terrestrial Planets. Space Sci Rev 152, 223–249 (2010). https://doi.org/10.1007/s11214-009-9557-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-009-9557-y

Keywords

Navigation