Skip to main content
Log in

Global Response of Martian Plasma Environment to an Interplanetary Structure: From Ena and Plasma Observations at Mars

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

As a part of the global plasma environment study of Mars and its response to the solar wind, we have analyzed a peculiar case of the subsolar energetic neutral atom (ENA) jet observed on June 7, 2004 by the Neutral Particle Detector (NPD) on board the Mars Express satellite. The “subsolar ENA jet” is generated by the interaction between the solar wind and the Martian exosphere, and is one of the most intense sources of ENA flux observed in the vicinity of Mars. On June 7, 2004 (orbit 485 of Mars Express), the NPD observed a very intense subsolar ENA jet, which then abruptly decreased within ∼10 sec followed by quasi-periodic (∼1 min) flux variations. Simultaneously, the plasma sensors detected a solar wind structure, which was most likely an interplanetary shock surface. The abrupt decrease of the ENA flux and the quasi-periodic flux variations can be understood in the framework of the global response of the Martian plasma obstacle to the interplanetary shock. The generation region of the subsolar ENA jet was pushed towards the planet by the interplanetary shock; and therefore, Mars Express went out of the ENA jet region. Associated global vibrations of the Martian plasma obstacle may have been the cause of the quasi-periodic flux variations of the ENA flux at the spacecraft location.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Acuña, M. H., Connerney, J. E. P., Wasilewski, P., Lin, R. P., Anderson, K. A., Carlson, C. W. et al.: 1998, Science 279, 1676–1680.

    Article  ADS  Google Scholar 

  • Acuña, M. H., Connerney, J. E. P., Ness, N. F., Lin, R. P., Mitchell, D., Carlson, C. W. et al.: 1999, Science 284, 790–793.

    Article  ADS  Google Scholar 

  • Araki, T.: 1994, in: M. J. Engebretson, K. Takahashi, and M. Scholer (eds.), Solar Wind Sources of Magnetospheric Ultra-Low-Frequency Waves, Geophysical Monograph, vol. 81, pp. 183–200.

  • Barabash, S., Norberg, O., Lundin, R., Olsen, S., Lundin, K., Brandt, P. C. et al.: 1998, in: R. F. Pfaff, J. E. Borovsky, and D. T. Young (eds.), Measurement Techniques in Space Plasmas, Field, AGU Geophysical Monograph 103, American Geophysical Union, Washington, DC, pp. 257–262.

    Google Scholar 

  • Barabash, S., Lundin, R., Andersson, H., Gimholt, J., Holmström, M., Norberg, O. et al.: 2004, in: A. Wilson, (ed.), Mars Express: The Scientific Payload, vol. SP-1240, ESA Special Publication, pp. 121–139.

  • Brinkfeldt, K., Gunell, H., Brandt, P., Barabash, S., Frahm, R. A., Winningham, J. D. et al.: 2006, Icarus 182(2), 439–447.

    Article  ADS  Google Scholar 

  • Crider, D. H., Acuña, M. H., Connerney, J. E. P., Vignes, D., Ness, N. F., Krymskii, A. M. et al.: 2002, Geophys. Res. Lett. 29(8), 1170, doi: 10.1029/2001GL013860.

    Article  ADS  Google Scholar 

  • Crider, D. H., Vignes, D., Krymskii, A. M., Breus, T. K., Ness, N. F., Mitchell, D. L. et al.: 2003, J. Geophys. Res. 108(A12), 1461, doi: 10.1029/2003JA009875.

    Article  Google Scholar 

  • Espley, J. R., Cloutier, P. A., Brain, D. A., Crider, D. H., and Acuña, M. H.: 2004, J. Geophys. Res. 109, A07213, doi: 10.1029/2003JA010193.

    Article  Google Scholar 

  • Feldman, W. C., Anderson, R. C., Bame, S. J., Gosling, J. T., Zwickl, R. D., and Smith, E. J.: 1983, J. Geophys. Res. 88, 9949–9958.

    Article  ADS  Google Scholar 

  • Fox, J. L., and Dalgarno, A.: 1979, J. Geophys. Res. 84(A12), 7315–7333.

    Article  ADS  Google Scholar 

  • Futaana, Y., Barabash, S., Grigoriev, A., Holmström, M., Kallio, E., C:son Brandt, P., et al.: 2006a, Icarus 182(2), 424–430.

    Article  ADS  Google Scholar 

  • Futaana, Y., Barabash, S., Grigoriev, A., Holmström, M., Kallio, E., C:son Brandt, P. et al.: 2006, Icarus 182(2), 413–423.

    Article  ADS  Google Scholar 

  • Gunell, H., Brinkfeldt, K., Holmström, M., Brandt, P., Barabash, S., Kallio, E. et al.: 2006, Icarus 182(2), 439–447.

    Article  ADS  Google Scholar 

  • Holmström, M., Barabash, S., and Kallio, E., 2002, J. Geophys. Res. 107(A10), 1277, doi: 10.1029/2001JA000325.

    Article  Google Scholar 

  • Kallio, E., and Barabash, S.: 2001, J. Geophys. Res. 106(A1), 165–177.

    Article  ADS  Google Scholar 

  • Kallio, E., Luhmann, J. G., and Barabash, S.: 1997, J. Geophys. Res. 102(A10), 22,183–22,197.

    Article  ADS  Google Scholar 

  • Kallio, E., Barabash, S., Brinkfeldt, K., Gunell, H., Holmström, M., Futaana, Y. et al.: 2006, Icarus 182(2), 448–463.

    Article  ADS  Google Scholar 

  • Lichtenegger, H., Lammer, H., and Stumptner, W.: 2002, 107(A10), 1279, doi: 10.1029/2001JA000322.

  • Lundin, R., Barabash, S., Andersson, H., Holmström, M., Grigoriev, A., Yamauchi, M. et al.: 2004, Science 305, 1933–1936.

    Article  ADS  Google Scholar 

  • Mitchell, D. G., Jaskulek, S. E., Schlemm, C. E., Keath, E. P., Thompson, R. E., Tossman, B. E. et al.: 2000, Space Sci. Rev. 91(1-2), 67–112.

    Article  ADS  Google Scholar 

  • Moore, T. E., Chornay, D. J., Collier, M. R., Herrero, F. A., Johnson, J., Johnson, M. A. et al.: 2000, Space Sci. Rev. 91(1–2), 155–195.

    Article  ADS  Google Scholar 

  • Nagy, A. F., Winterhalter, D., Sauer, K., Cravens, T. E., Brecht, S., Mazelle, C. et al.: 2004, Space Sci. Rev. 111, 33–114.

    Article  ADS  Google Scholar 

  • Peréz-de-Tejada, H.: 1987, J. Geophys. Res. 92, 4713–4718.

    Article  ADS  Google Scholar 

  • Pollock, C. J., Asamura, K., Baldonado, J., Balkey, M. M., Barker, P., Burch, J. L. et al.: 2000, Space Sci. Rev. 91(1–2), 113–154.

    Article  ADS  Google Scholar 

  • Roelof, E. C., Mitchell, D. G., and Williams, D. J.: 1985, J. Geophys. Res. 90, 10,991–11,008.

    Article  ADS  Google Scholar 

  • Sagdeev, R. Z., and Zakharov, A. V.: 1989, 341(6243), 581–585.

  • Thomsen, M. F.: 1985, in: B. T. Tsurutani, and R. G. Stone (eds.), Collisionless Shocks in the Heliosphere: Reviews of Current Research, American Geophysical Union, pp. 253–270.

  • Treumann, R. A., and Terasawa, T.: 2001, Space Sci. Rev. 99, 135–150.

    Article  ADS  Google Scholar 

  • Vaisberg, O. L.: 1992, in: J. G. Luhmann, M. Tatrallyay, and R. O. Pepin (eds.), Venus and Mars Atmospheres, Ionospheres, and Solar Wind Interactions, AGU Geophysical Monograph, vol. 66, pp. 311–326.

  • Vignes, D., Mazelle, C., Rème, H., Acuña, M. H., Connerney, J. E. P., Lin, R. P. et al.: 2000, Geophys. Res. Lett. 27(1), 49–52.

    Article  ADS  Google Scholar 

  • Vignes, D., Acuña, M. H., Connerney, J. E. P., Crider, D. H., Rème, H., and Mazelle, C.: 2002, Geophys. Res. Lett. 9, 1328, doi: 10.029/2001GL014513.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Futaana, Y., Barabash, S., Grigoriev, A. et al. Global Response of Martian Plasma Environment to an Interplanetary Structure: From Ena and Plasma Observations at Mars. Space Sci Rev 126, 315–332 (2006). https://doi.org/10.1007/s11214-006-9026-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-006-9026-9

Keywords

Navigation