Skip to main content
Log in

Magnetosphere Imaging Instrument (MIMI) on the Cassini Mission to Saturn/Titan

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The magnetospheric imaging instrument (MIMI) is a neutral and charged particle detection system on the Cassini orbiter spacecraft designed to perform both global imaging and in-situ measurements to study the overall configuration and dynamics of Saturn’s magnetosphere and its interactions with the solar wind, Saturn’s atmosphere, Titan, and the icy satellites. The processes responsible for Saturn’s aurora will be investigated; a search will be performed for substorms at Saturn; and the origins of magnetospheric hot plasmas will be determined. Further, the Jovian magnetosphere and Io torus will be imaged during Jupiter flyby. The investigative approach is twofold. (1) Perform remote sensing of the magnetospheric energetic (E > 7 keV) ion plasmas by detecting and imaging charge-exchange neutrals, created when magnetospheric ions capture electrons from ambient neutral gas. Such escaping neutrals were detected by the Voyager l spacecraft outside Saturn’s magnetosphere and can be used like photons to form images of the emitting regions, as has been demonstrated at Earth. (2) Determine through in-situ measurements the 3-D particle distribution functions including ion composition and charge states (E > 3 keV/e). The combination of in-situ measurements with global images, together with analysis and interpretation techniques that include direct “forward modeling’’ and deconvolution by tomography, is expected to yield a global assessment of magnetospheric structure and dynamics, including (a) magnetospheric ring currents and hot plasma populations, (b) magnetic field distortions, (c) electric field configuration, (d) particle injection boundaries associated with magnetic storms and substorms, and (e) the connection of the magnetosphere to ionospheric altitudes. Titan and its torus will stand out in energetic neutral images throughout the Cassini orbit, and thus serve as a continuous remote probe of ion flux variations near 20R S (e.g., magnetopause crossings and substorm plasma injections). The Titan exosphere and its cometary interaction with magnetospheric plasmas will be imaged in detail on each flyby. The three principal sensors of MIMI consists of an ion and neutral camera (INCA), a charge–energy–mass-spectrometer (CHEMS) essentially identical to our instrument flown on the ISTP/Geotail spacecraft, and the low energy magnetospheric measurements system (LEMMS), an advanced design of one of our sensors flown on the Galileo spacecraft. The INCA head is a large geometry factor (G ∼ 2.4 cm2 sr) foil time-of-flight (TOF) camera that separately registers the incident direction of either energetic neutral atoms (ENA) or ion species (≥5 full width half maximum) over the range 7 keV/nuc < E < 3 MeV/nuc. CHEMS uses electrostatic deflection, TOF, and energy measurement to determine ion energy, charge state, mass, and 3-D anisotropy in the range 3 ≤ E ≤ 220 keV/e with good (∼0.05 cm2 sr) sensitivity. LEMMS is a two-ended telescope that measures ions in the range 0.03 ≤ E ≤ 18 MeV and electrons 0.015 ≤ E≤ 0.884 MeV in the forward direction (G ∼ 0.02 cm2 sr), while high energy electrons (0.1–5 MeV) and ions (1.6–160 MeV) are measured from the back direction (G ∼ 0.4 cm2 sr). The latter are relevant to inner magnetosphere studies of diffusion processes and satellite microsignatures as well as cosmic ray albedo neutron decay (CRAND). Our analyses of Voyager energetic neutral particle and Lyman-α measurements show that INCA will provide statistically significant global magnetospheric images from a distance of ∼60 R S every 2–3 h (every ∼10 min from ∼20 R S). Moreover, during Titan flybys, INCA will provide images of the interaction of the Titan exosphere with the Saturn magnetosphere every 1.5 min. Time resolution for charged particle measurements can be < 0.1 s, which is more than adequate for microsignature studies. Data obtained during Venus-2 flyby and Earth swingby in June and August 1999, respectively, and Jupiter flyby in December 2000 to January 2001 show that the instrument is performing well, has made important and heretofore unobtainable measurements in interplanetary space at Jupiter, and will likely obtain high-quality data throughout each orbit of the Cassini mission at Saturn. Sample data from each of the three sensors during the August 18 Earth swingby are shown, including the first ENA image of part of the ring current obtained by an instrument specifically designed for this purpose. Similarily, measurements in cis-Jovian space include the first detailed charge state determination of Iogenic ions and several ENA images of that planet’s magnetosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amsif, A.: 1996, Etude et modélisation de la production d’atomes énergétiques neutres dans l’exosphère de Titan, Ph. D. Thesis, P. Sabatier University, Toulouse, France.

  • Amsif, A., Dandouras, J., and Roelof, E. C.: 1997, J. Geophys. Res. 102, 22169.

    Google Scholar 

  • Barbosa, D. D.: 1987, Icarus 72, 53.

    Article  Google Scholar 

  • Barbosa, D. D. and Eviatar, A.: 1986, Astrophys. J. 310, 927.

    Google Scholar 

  • Barbosa, D. D., Eviatar, A., and Siscoe, G. L.: 1984, J. Geophys. Res. 89, 3789.

    Google Scholar 

  • Baron, R. L., Owen, T., Connerney, J. E. P., Satoh, T., and Harrington, J.: 1996, Icarus 120/122, 437.

    Article  Google Scholar 

  • Barrow, C. H. and Desch, M. D.: 1989, Astron. Astro. Phys. 213, 495.

    Google Scholar 

  • Belcher, J. W.: 1983, in: Dessler, A. J. (ed.), Physics of the Jovian Magnetosphere, Cambridge University Press, Cambridge, UK and New York, p. 68.

    Google Scholar 

  • Broadfoot, A. L., Sandel, B. R., Shemansky, D. E., Holberg, J. B., Smith, G. R., Strobel, D. F., McConnell, J. C., Kumar, S., Hunten, D. M., Atreya, S. K., Donahue, T. M., Moos, H. W., Bertaux, L., Blamont, J. E., Pomphrey, R. B., and Linick, S.: 1981, Science 212, 206.

    Google Scholar 

  • Burns, J. A., et al. 1994, An Integrated Strategy for the Planetary Sciences: 1995–2010, Report of the Committee on Planetary and Lunar Exploration, Space Studies Board, National Research Council, Washington, DC.

  • Carbary, J. F. and Krimigis, S. M.: 1982, Geophys. Res. Lett. 9, 420.

    Google Scholar 

  • Cheng, A. F.: 1986, J. Geophys. Res. 91, 4524.

    Google Scholar 

  • Cheng, A. F. and Krimigis, S. M.: 1989a, J. Geophys. Res. 94, 12003.

    Google Scholar 

  • Cheng, A. F. and Krimigis, S. M.: 1989b, Waite, J. H., Burch, J., Moore, R. (eds.),AGU Solar System Plasma Physics, p. 253.

  • Cheng, A. F., Keath, E. P., Krimigis, S. M., Mauk, B. H., McEntire, R. W., Mitchell, D. G., Roelof, E. C., and Williams, D. J.: 1993, Remote Sens. Rev. 8, 101.

    Google Scholar 

  • Clarke, J. T.,et al.1996, Science 274, 404.

    Google Scholar 

  • Curtis, C. C. and Hsieh, K. C.: 1989, AGU Solar Syst. Plasma Phys., Geophys. Monogr. Ser. 54, 247.

    Google Scholar 

  • Dandouras, J. and Amsif, A.: 1999, Planet. Space Sci. 47, 1355.

    Article  Google Scholar 

  • Desch, M. D. and Barrow, C. H.: 1984, J. Geophys. Res. 89, 6819.

    Google Scholar 

  • Dessler, A. J.: 1983, Physics of the Jovian Magnetosphere, Cambridge University Press.

  • Esposito, L. W., Cuzzi, J. N., Holberg, J. B., Marouf, E. A., Tyler, G. L., and Porco, C. C.: 1984, Gehrels, T., Matthews, M. S., (eds.), Saturn, The University of Arizona Press, Tucson, p. 463.

    Google Scholar 

  • Eviatar, A.: 1992, Adv. Space Res. 12(8), 367.

    Article  Google Scholar 

  • Eviatar, A., Mekler, Y., and Coroniti, F. V.: 1976, Astrophys. J. 205, 622.

    Article  Google Scholar 

  • Fisk, L. A., Schwadron, N. A., and Gloeckler, G.: 1997, Geophys. Res. Lett. 24, 93.

    Article  Google Scholar 

  • Gehrels, T.: 1976, Jupiter, University of Arizona Press, Tucson, Arizona.

    Google Scholar 

  • Geiss, J., Gloeckler, G., Fist, L. A. von Steiger, R.: 1995, J. Geophys. Res. 100, 23373.

    Article  Google Scholar 

  • Geiss, J., Gloeckler, G., Mall, U., von Steiger, R., Galvin, A. B., and Ogilvie, K. W.: 1994, Astron. Astrophys. 282, 924.

    Google Scholar 

  • Geiss, J.,et al.1992, Science 257, 1535.

    Google Scholar 

  • Gloeckler, G.: 1996, Space Sci. Rev. 78, 335.

    Article  Google Scholar 

  • Gloeckler, G. and Geiss, J.: 1998, Space Sci. Rev. 86(1–2), 127–159.

    Article  Google Scholar 

  • Gloeckler, G. and Geiss, J.: 1996, Nature 381, 210.

    Article  Google Scholar 

  • Gloeckler, G. and Hsieh, K. C.: 1979, Nucl. Inst. Methods 165, 537.

    Article  Google Scholar 

  • Gloeckler, G., Fisk, L. A., and Geiss, J.: 1997, Nature 386, 374.

    Google Scholar 

  • Gloeckler, G., Balsiger, H., Bürgi, A., Bochsler, P., Fisk, L. A., Galvin, A. B., Geiss, J., Gliem, F., Hamilton, D. C., Holzer, T. E., Hovestadt, D., Ipavich, F. M., Kirsch, E., Lundgren, R. A., Ogilvie, K. W., Sheldon, R. B., and Wilken, B.: 1995, Space Sci. Rev. 71, 79.

    Google Scholar 

  • Gloeckler, G., Jokipii, J. R., Giacalone, J., and Geiss, J.: 1994, Geophys. Res. Lett. 21, 1565.

    Google Scholar 

  • Gloeckler, G., Geiss, J., Balsiger, H., Fisk, L. A., Galvin, A. B., Ipavich, F. M., Ogilvie, K. W., von Steiger, R., and Wilken, B.: 1993, Science 261, 70.

    Google Scholar 

  • Goertz, C. K.: 1989, Waite, J. H., Burch, J. L., Moore, R. L. (eds.), AGU Solar System Plasma Physics, Geophysical Monograph Series Vol. 54, p. 427.

  • Gurnett, D. A.,et al.1982, J. Geophys. Res. 87, 1395.

    Google Scholar 

  • Hilchenbach, M.et al.1998, Astophys. J. 503, 916.

    Article  Google Scholar 

  • Holzer, T. E.: 1977, Rev. Geophys. Space Phys. 15, 467.

    Google Scholar 

  • Hsieh, K. C. and Curtis, C. C.: 1989, Waite, J., Burch, J., Moore, R. L. (eds.), AGU Solar System Plasma Physics, p. 159.

  • Hsieh, K. C. and Curtis, C. C.: 1988, Geophys. Res. Lett. 15, 772.

    Google Scholar 

  • Hsieh, K. C., Shih, K. L., Jokipii, J. R., and Gruntman, M. A.: 1992a, Astophys. J. 393, 756.

    Article  Google Scholar 

  • Hsieh, K. C., Shih, K. L., Jokipii, J. R., and Gruntman, M. A.: 1992b, Marsch, E., Schwenn, R., (eds.), Proceedings of the 3rd COSPAR Colloquium, p. 365.

  • Hsieh, K. C., Sandel, B. R., Drake, V. A., King, R. S.: 1991, Nucl. Inst. Methods B61, 187.

    Google Scholar 

  • Hsieh, K. C., Keppler, E., and Schmidtke, G.: 1980, J. Appl. Phys. 51, 2242.

    Google Scholar 

  • Ip, W. H.: 1997, Icarus 126, 42.

    Article  Google Scholar 

  • Ip, W. H.: 1996, Astrophys. J. 457, 922.

    Article  Google Scholar 

  • Ip, W. H.: 1992, in: Proceedings of the Symposium on Titan, Toulouse, France, ESA SP-338, p. 243.

  • Ip, W. H.: 1990, Astrophys. J. 362, 354.

    Google Scholar 

  • Ip, W. H.: 1984, J. Geophys. Res. 89, 2377.

    Google Scholar 

  • Ip, W. H., Williams, D. J., McEntire, R. W., and Mauk, B. H.: 1998, Geophys. Res. Lett. 25, 829.

    Article  Google Scholar 

  • Ip, W. H., Williams, D. J., McEntire, R. W., and Mauk, B. H.: 1997, Geophys. Res. Lett. 24, 2631.

    Google Scholar 

  • Ipavich, F. M., Lundgren, R. A., Lambird, B. A., and Gloeckler, G.: 1978, Nucl. Inst. Methods 154, 291.

    Article  Google Scholar 

  • Johnson, R. E.: 1990, Energetic Charged Particle Interactions with Atmospheres and Surfaces, Springer-Verlag, New York.

    Google Scholar 

  • Johnson, R. E., Pospieszalska, M., Sittler, E., Cheng, A. F., Lanzerotti, L. J., and Sieveka, E. M.: 1989, Icarus 77, 311.

    Article  CAS  Google Scholar 

  • Kaiser, M. L.: 1993, J. Geophys. Res. 98, 18757.

    Google Scholar 

  • Kirsch, E., Krimigis, S. M., Ip, W. H. Gloeckler, G.: 1981a, Nature 292, 718.

    Google Scholar 

  • Kirsch, E., Krimigis, S. M., Kohl, J. W., Keath, E. P.: 1981b, Geophys. Res. Lett. 8, 169.

    Google Scholar 

  • Krimigis, S. M.: 1992, Space Sci. Rev. 59, 167.

    Article  Google Scholar 

  • Krimigis, S. M.: 1986, Comparative Study of Magnetospheric Systems, CNES, LEPADUE Editions, Toulouse, France, Vol. 99.

  • Krimigis, S. M. and Armstrong, T. P.: 1982, Geophys. Res. Lett. 9, 1143.

    Google Scholar 

  • Krimigis, S. M., Carbary, J. F., Keath, E. P., and Armstrong, T. P.: 1982a, EOS 1068.

  • Krimigis, S. M., Armstrong, T. P., Axford, W. I., Bostrom, C. O., Gloeckler, G., Keath, E. P., Lanzerotti, L. J., Carbary, J. F., Hamilton, D. C., and Roelof, E. C.: 1982b, Science 215, 571.

    Google Scholar 

  • Krimigis, S. M., Carbary, J. F., Keath, E. P., Armstrong, T. P., Lanzerotti, L. J., and Gloeckler, G.: 1983, J. Geophys. Res. 88, 8871.

    Google Scholar 

  • Krimigis, S. M., Decker, R. B., Hamilton, D., and Gloeckler, G.: 2000, AIP Conf. Proc. 528, 333– 336.

    Google Scholar 

  • Krimigis, S. M., Zwickl, R. D., and Baker, D. N.: 1985, J. Geophys. Res. 90, 3947.

    Google Scholar 

  • Krimigis, S. M., Mitchell, D. G., Hamilton, D. C., Dandouras, J., Armstrong, T. P., Bolton, S. J., Cheng, A. F., Gloeckler, G., Hsieh, K. C., Keath, E. P., Krupp, N., Lagg, A., Lanzerotti, L. J., Livi, S., Mauk, B. H., McEntire, R. W., Roelof, E. C., Wilken, B., and Williams, D. J.: 2002, Nature 415, 994.

    PubMed  Google Scholar 

  • Krimigis, S. M.,et al.1988, Planet. Space Sci. 36, 311.

    Article  Google Scholar 

  • Krupp, N., Woch, J., Lagg, A., Wilken, B., Livi, S., and Williams, D. J.: 1998, Geophys. Res. Lett. 25, 1249–1252.

    Article  Google Scholar 

  • Lagg, Andreas: 1998, Energiereiche Teilchen in der inneren Jupitermagnetosphaere: Simulation und Ergebnisse des EPD-Experimentes an Bord der Raumsonde GALILEO, Dissertation, Max-Planck-Institut fuer Aeronomie, Lindau/Harz, Germany, MPAE-W-807-98-01.

  • Lee, M. A.: 1982, J. Geophys. Res. 87, 5063.

    Google Scholar 

  • Mall, U., Fichtner, H., Kirsch, E., Hamilton, D. C., and Rucinski, D.: 1998, Planet. Space Sci., 46, 1375–1382.

    Article  Google Scholar 

  • Mauk, B. H. and Krimigis, S. M.: 1987, J. Geophys. Res. 92, 9931.

    Google Scholar 

  • Mauk, B. H., Krimigis, S. M., Mitchell, D. G., Roelof, E. C., Keath, E. P., and Dandouras, J.: 1998, Planet. Space Sci. 46, 1349.

    Article  Google Scholar 

  • Mauk, B. H., Williams, D. J., and McEntire, R. W.: 1997a, Geophys. Res. Lett. 24, 2949.

    Article  Google Scholar 

  • Mauk, B. H., Williams, D. J., McEntire, R. W., Khurana, K. K., and Roederer, J. G.: 1999, J. Geophys. Res. 104, 22759.

    Article  Google Scholar 

  • Mauk, B. H., Krimigis, S. M., Mitchell, D. G., and Roelof, E. C.: 1998,Adv. Space Res. 21, 1483.

    Article  Google Scholar 

  • Mauk, B. H., Krimigis, S. M., and Acuña, M. H.: 1994, J. Geophys. Res. 99, 14781.

    Google Scholar 

  • Mauk, B., Krimigis, S. M., and Lepping, R.: 1985, J. Geophys. Res. 90, 8253.

    Google Scholar 

  • McEntire, R. W. and Mitchell, D. G.: 1989, Burch, J., Waite, J., (eds.),Outstanding Problems in Solar System Plasma Physics, AGU Monograph.

  • Meckbach, W., Braunstein, G., and Arista, N.: 1975, J. Phys. B 8, L344.

    Google Scholar 

  • Mendis, D. A., Hill, J. R., Ip, W. H., Goertz, C. K., and Grün, E.: 1984, ’Electrodynamic processes in the ring system of Saturn’., Gehrels, T., Matthews,M. S.(eds.), Saturn, The University of Arizona Press, Tucson, p. 546.

    Google Scholar 

  • Mitchell, D. G., Hsieh, K. C., Curtis, C. C., Hamilton, D. C., Voss, H. D., Roelof, E. C., and Brent, P. C.: 2001, Geophys. Res. Lett. 28, 1151.

    Article  Google Scholar 

  • Mitchell, D. G., Krimigis, S. M., Cheng, A. F., Jaskulek, S. E., Keath, E. P., Mauk, B. H., McEntire, R. W., Roelof, E. C., Schlemm, C. E., Tossman, B. E., and Williams, D. J.: 1996, in: Proceedings SPIE International Symposium on Optical Science Engineering and Instrumentation, Mission to the Sun, Vol. 2803, p. 154.

    Google Scholar 

  • Ness, N. F.,et al.1982, J. Geophys. Res. 87, 1369.

    Google Scholar 

  • Neubauer, F. M.: 1992, in: Proceedings of the Symposium on Titan, Toulouse, France, ESA SP-338, p. 267.

  • Paonessa, M. and Cheng, A. F.: 1986, J. Geophys. Res. 91, 1391.

    Google Scholar 

  • Paranicas, C., Cheng, A. F., and Williams, D. J.: 1998, J. Geophys. Res. 103, 15001.

    Article  Google Scholar 

  • Paranicas, C. P., Mauk, B. H., and Krimigis, S. M.: 1991, J. Geophys. Res. 96, 21135.

    Google Scholar 

  • Prangé, R., Zarka, P., Ballester, G. E., Livengood, T. A., Denis, L., Carr, T., Reyes, F., Bame, S. J., and Moos, H. W.: 1993, Geophys. Res. 98, 18779.

    Google Scholar 

  • Reiner, M. J., Fainberg, J., Stone, R. G., Kaiser, M. L., Desch, M. D., Manning, R., Zarka, P., and Pedersen, B. M.: 1993, J. Geophys. Res. Planets 98, 13163.

    Google Scholar 

  • Roelof, E. C.: 1992, E. Marsh, R. Schwenn (eds) Proceedings of the 3rd COSPAR Colloquium, p. 385.

  • Roelof, E. C.: 1987, Geophys. Res. Lett. 14, 652.

    Google Scholar 

  • Roelof, E. C. and Williams, D. J.: 1990, Johns Hopkins APL Tech. Dig. 11, 72.

    Google Scholar 

  • Roelof, E. C., Mitchell, D. G., and Williams, D. J.: 1985, J. Geophys. Res. 90, 10991.

    Google Scholar 

  • Sandel, B. R. and Broadfoot, A. L.: 1981, Nature 292, 679.

    Article  Google Scholar 

  • Satoh, T., Connerney, J. E. P., and Baron, R. L.: 1996, Icarus 122, 1.

    Article  Google Scholar 

  • Schneider, N. M. and Trauger, J. T.: 1995, Astrophys. J. 450, 450.

    Article  Google Scholar 

  • Schulz, M. and Lanzerotti, L. J.: 1974, Particle Diffusion in the Radiation Belts, Springer-Verlag.

  • Shemansky, D. E. and Hall, D. T.: 1992, J. Geophys. Res. 97, 4143.

    Google Scholar 

  • Simpson, J. A., Bastian, T. S., Chenette, D. L., McKibben, R. B., and Pyle, K. R.: 1980, J. Geophys. Res. 85, 5731.

    Google Scholar 

  • Sittler, E. C., Ogilvie, K. W., and Scudder, J. D.: 1983, J. Geophys. Res. 88, 8847.

    Google Scholar 

  • Van Allen, J. A.: 1984, Gehrels, T., Matthews, M. S., (eds.),Saturn, p. 281.

  • Williams, D. J. and Mauk, B. H.: 1997, J. Geophys. Res. 102, 24283.

    Article  Google Scholar 

  • Williams, D. J., Mauk, B., and McEntire, R. W.: 1997a, Geophys. Res. Lett. 24, 2953.

    Article  Google Scholar 

  • Williams, D. J., Mauk, B. H., McEntire, R. W., Roelof, E. C., Armstrong, T. P., Wilken, B., Roederer, J. G., Krimigis, S. M., Fritz, T. A., Lanzerotti, L. J., and Murphy, N.: 1997b, Geophys. Res. Lett. 24, 2163.

    Article  Google Scholar 

  • Williams, D. J., Mauk, B. H., McEntire, R. W., Roelof, E. C., Armstrong, T. P., Wilken, B., Roederer, J. G., Krimigis, S. M., Fritz, T. A., Lanzerotti, L. J.: 1996, Science 274, 401.

    PubMed  Google Scholar 

  • Williams, D. J., McEntire, R. W., Schlemm, C. E., Lui, A. T. Y., Gloeckler, G., Christon, S. P., and Gliem, F.: 1994, J. Geomagn. Geoelectr. 46, 39.

    Google Scholar 

  • Witte, M., Banaszkiewicz, M., and Rosenbauer, H.: 1996, Space Sci. Rev. 78, 289.

    Article  Google Scholar 

  • Woch, J., Krupp, N., Lagg, A., Wilken, B., Livi, S., and Williams, D. J.: 1998, Geophys. Res. Lett. 25, 1253–1256.

    Article  Google Scholar 

  • Woch, J., Krupp, N., Khurana, K. K., Kivelson, M. G., Roux, A., Perraut, S., Louarn, P., Lagg, A., Williams, D. J., Livi S., and Wilken, B.: 1999, Geophys. Res. Lett. 26, 2137–2140.

    Article  Google Scholar 

  • Zwickl, R. D., Krimigis, S. M., Carbary, J. F., Keath, E. P., Armstrong, T. P., Hamilton, D. C., and Gloeckler, G.: 1981, J. Geophys. Res. 86, 8125.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Krimigis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krimigis, S.M., Mitchell, D.G., Hamilton, D.C. et al. Magnetosphere Imaging Instrument (MIMI) on the Cassini Mission to Saturn/Titan. Space Sci Rev 114, 233–329 (2004). https://doi.org/10.1007/s11214-004-1410-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-004-1410-8

Keywords

Navigation