Skip to main content

Advertisement

Log in

The Magnetic Field Geometry of Small Solar Wind Flux Ropes Inferred from Their Twist Distribution

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

This work extends recent efforts on the force-free modeling of large flux rope-type structures (magnetic clouds, MCs) to much smaller spatial scales. We first select small flux ropes (SFRs) by eye whose duration is unambiguous and which were observed by the Solar Terrestrial Relations Observatory (STEREO) or Wind spacecraft during solar maximum years. We inquire into which analytical technique is physically most appropriate, augmenting the numerical modeling with considerations of magnetic twist. The observational fact that these SFRs typically do not expand significantly into the solar wind makes static models appropriate for this study. SFRs can be modeled with force-free methods during the maximum phase of solar activity. We consider three models: (i) a linear force-free field (\(\nabla\times \mathbf{B} = \alpha \mathbf{B}\)) with a specific, prescribed constant \(\alpha\) (Lundquist solution), and (ii) with \(\alpha\) as a free constant parameter (“Lundquist-alpha” solution), and (iii) a uniform twist field (Gold–Hoyle solution). We retain only those cases where the impact parameter is less than one-half the flux rope (FR) radius, \(R\), so the results should be robust (29 cases). The SFR radii lie in the range \([{\approx}\,0.003, 0.059]~\mbox{AU}\). Comparing results, we find that the Lundquist-alpha and uniform twist solutions yielded comparable and small normalized \(\chi^{2}\) values in most cases. This means that analytical modeling alone cannot distinguish which of these two is better in reproducing their magnetic field geometry. We then use Grad–Shafranov (GS) reconstruction to analyze these events further in a model-independent way. The orientations derived from GS are close to those obtained from the uniform twist field model. We then considered the twist per unit length, \(\tau\), both its profile through the FR and its absolute value, applying a graphic approach to obtain \(\tau\) from the GS solution. The results are in better agreement with the uniform twist model. We find \(\tau\) to lie in the range \([5.6, 34]~\mbox{turns}/\mbox{AU}\), i.e. much higher than typical values for MCs. The GH model-derived \(\tau\) values are comparable to those obtained from GS reconstruction. We find that the twist per unit length, \(L\), is inversely proportional to \(R\), as \(\tau\approx0.17/R\). We combine MC and SFR results on \(\tau(R)\) and give a relation that is approximately valid for both sets. Using this, we find that the axial and azimuthal fluxes, \(F_{z}\) and \(F_{\phi}\), vary as \({\approx}\,2.1 B_{0} R^{2}\) (\({\times}10^{21}~\mbox{Mx}\)) and \(F_{\phi}/L \approx0.36 B_{0} R\) (\({\times}10^{21}~\mbox{Mx}/\mbox{AU}\)). The relative helicity per unit length is \(H/L \approx0.75 B_{0}^{2} R^{3}\) (\({\times}10^{42}~\mbox{Mx}^{2}/\mbox{AU}\)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  • Al-Haddad, N., Nieves-Chinchilla, T., Savani, N.P., Möstl, C., Marubashi, K., Hidalgo, M.A., et al.: 2013, Magnetic field configuration models and reconstruction methods for interplanetary coronal mass ejections. Solar Phys. 284, 129. DOI .

    Article  ADS  Google Scholar 

  • Al-Haddad, N., Nieves-Chinchilla, T., Savani, N.P., Lugaz, N., Roussev, I.: 2018, Fitting and reconstruction of thirteen simple coronal mass ejections. Solar Phys. 293, 73. DOI .

    Article  ADS  Google Scholar 

  • Aulanier, G., Janvier, M., Schmieder, B.: 2012, The standard flare model in three dimensions – I. Strong-to-weak shear transition in post-flare loops. Astron. Astrophys. 543, A110. DOI .

    Article  ADS  Google Scholar 

  • Burlaga, L.F.: 1988, Magnetic clouds: Constant alpha force-free configurations. J. Geophys. Res. 93, 7217. DOI .

    Article  ADS  Google Scholar 

  • Burlaga, L., Sittler, E., Mariani, F., Schwenn, R.: 1981, Magnetic loop behind an interplanetary shock: Voyager, Helios, and IMP 8 observations. J. Geophys. Res. 86, 6673. DOI .

    Article  ADS  Google Scholar 

  • Dasso, S., Mandrini, C.H., Démoulin, P., Luoni, M.L.: 2006, A new model-independent method to compute magnetic helicity in magnetic clouds. Astron. Astrophys. 455, 349. DOI .

    Article  ADS  MATH  Google Scholar 

  • Démoulin, P.: 2010, Interaction of ICMEs with the solar wind. AIP Conf. Proc. 1216, 229. DOI .

    Article  ADS  Google Scholar 

  • Farrugia, C.J., Burlaga, L.F., Osherovich, V.A., Richardson, I.G., Freeman, M.P., Lepping, R.P., et al.: 1993, A study of an expanding interplanetary magnetic cloud and its interaction with the Earth’s magnetosphere: The interplanetary aspect. J. Geophys. Res. 98, 7621. DOI .

    Article  ADS  Google Scholar 

  • Farrugia, C.J., Janoo, L.A., Torbert, R.B., Quinn, J.M., Ogilvie, K.W., Lepping, R.P., et al.: 1999, A uniform-twist magnetic flux rope in the solar wind. AIP Conf. Proc. 471, 745. DOI .

    Article  ADS  Google Scholar 

  • Galvin, A.B., Kistler, L.M., Popecki, M.A., Farrugia, C.J., Simunac, K.D.C., Ellis, L., et al.: 2008, The plasma and suprathermal ion composition (PLASTIC) investigation on the STEREO observatories. Space Sci. Rev. 136, 437. DOI .

    Article  ADS  Google Scholar 

  • Gold, T., Hoyle, F.: 1960, On the origin of solar flares. Mon. Not. Roy. Astron. Soc. 120, 89. ADS .

    Article  ADS  Google Scholar 

  • Hau, L.-N., Sonnerup, B.U.Ö: 1999, Two-dimensional coherent structures in the magnetopause: Recovery of static equilibria from single-spacecraft data. J. Geophys. Res. 104, 6899. DOI .

    Article  ADS  Google Scholar 

  • Hu, Q., Qiu, J., Krucker, S.: 2015, Magnetic field line lengths inside interplanetary magnetic flux ropes. J. Geophys. Res. 120, 5266. DOI .

    Article  Google Scholar 

  • Hu, Q., Sonnerup, B.U.Ö: 2001, Reconstruction of magnetic flux ropes in the solar wind. Geophys. Res. Lett. 28(3), 467. DOI .

    Article  ADS  Google Scholar 

  • Hu, Q., Sonnerup, B.U.Ö: 2002, Reconstruction of magnetic clouds in the solar wind: Orientations and configurations. J. Geophys. Res. 107, 1142. DOI .

    Article  Google Scholar 

  • Hu, Q., Qiu, J., Dasgupta, B., Khare, A., Webb, G.M.: 2014, Structures of interplanetary magnetic flux ropes and comparison with their solar sources. Astrophys. J. 793, 53. DOI .

    Article  ADS  Google Scholar 

  • Janvier, M., Démoulin, P., Dasso, S.: 2013, Global axis shape of magnetic clouds deduced from the distribution of their local axis orientation. Astron. Astrophys. 556, A50. DOI .

    Article  ADS  Google Scholar 

  • Kahler, S.W., Haggerty, D.K., Richardson, I.G.: 2011, Magnetic field-line lengths in interplanetary coronal mass ejections inferred from energetic electron events. Astrophys. J. 736, 106. DOI .

    Article  ADS  Google Scholar 

  • Khrabrov, A.V., Sonnerup, B.U.Ö.: 1998, deHoffmann–Teller analysis. In: Analysis Methods for Multi-Spacecraft Data, International Space Science Institute, Bern, 221.

    Google Scholar 

  • Larson, D.E., Lin, R.P., McTieman, J.M., McFadden, J.P., Ergun, R.E., McCarthy, M., et al.: 1997, Tracing the topology of the October 18 – 20, 1995, magnetic cloud with \({\sim}\,0.1\,\mbox{--}\,10^{2}~\mbox{keV}\) electrons. Geophys. Res. Lett. 24(15), 1911. DOI .

    Article  ADS  Google Scholar 

  • Lepping, R.P., Jones, J.A., Burlaga, L.F.: 1990, Magnetic field structure of interplanetary magnetic clouds at 1 AU. J. Geophys. Res. 95, 11957. DOI .

    Article  ADS  Google Scholar 

  • Lepping, R.P., Acũna, M.H., Brulaga, L.F., Farrell, W.M., Slavin, J.A., Schatten, K.H., et al.: 1995, The Wind Magnetic Field Investigation. Space Sci. Rev. 71, 207. DOI .

    Article  ADS  Google Scholar 

  • Lepping, R.P., Berdichevsky, D.B., Wu, C.-C., Szabo, A., Narock, T., Mariani, F., et al.: 2006, A summary of WIND magnetic clouds for years 1995 – 2003: Model-fitted parameters, associated errors and classifications. Ann. Geophys. 24, 215. DOI .

    Article  ADS  Google Scholar 

  • Liu, Y., Luhmann, J.G., Huttunen, K.E.J., Lin, R.P., Bale, S.D., Russell, C.T., et al.: 2008, Reconstruction of the 2007 May 22 magnetic cloud: How much can we trust the flux-rope geometry of CMEs? Astrophys. J. 677, L133. DOI .

    Article  ADS  Google Scholar 

  • Luhmann, J.G., Curtis, D.W., Schroeder, P., McCauley, J., Lin, R.P., Larson, D.E., et al.: 2008, STEREO IMPACT investigation goals, measurements, and data products overview. Space Sci. Rev. 136, 117. DOI .

    Article  ADS  Google Scholar 

  • Lundquist, S.: 1950, Magnetohydrostatic fields. Ark. Fys. 2, 361.

    MathSciNet  MATH  Google Scholar 

  • Mandrini, C.H., Pohjolainen, S., Dasso, S., Green, L.M., Démoulin, P., van Driel-Gesztelyi, L., et al.: 2005, Interplanetary flux rope ejected from an X-ray bright point – The smallest magnetic cloud source-region ever observed. Astron. Astrophys. 434(2), 725. DOI .

    Article  ADS  Google Scholar 

  • Markwardt, C.B.: 2009, Non-linear least squares fitting in IDL with MPFIT. In: Bohlender, D., Dowler, P., Durand, D. (eds.) Proc. ADASS XVIII. ASP Conf. Ser., 411, Astronomical Society of the Pacific, San Francisco, 251.

    Google Scholar 

  • Marubashi, K., Lepping, R.P.: 2007, Long-duration magnetic clouds: A comparison of analyses using torus- and cylinder-shaped flux rope models. Ann. Geophys. 25, 2453. DOI .

    Article  ADS  Google Scholar 

  • Moldwin, M.B., Ford, S., Lepping, R., Slavin, J., Szabo, A.: 2000, Small-scale magnetic flux ropes in the solar wind. Geophys. Res. Lett. 27(1), 57. DOI .

    Article  ADS  Google Scholar 

  • Möstl, C., Miklenic, C., Farrugia, C.J., Temmer, M., Veronig, A., Galvin, A.B., et al.: 2008, Two-spacecraft reconstruction of a magnetic cloud and comparison to its solar source. Ann. Geophys. 26, 3139. DOI .

    Article  ADS  Google Scholar 

  • Möstl, C., Farrugia, C.J., Biernat, H.K., Leitner, M., Kilpua, E.K.J., Galvin, A.B., et al.: 2009, Optimized Grad–Shafranov reconstruction of a magnetic cloud using STEREO-Wind observations. Solar Phys. 256, 427. DOI .

    Article  ADS  Google Scholar 

  • Newbury, J.A., Russell, C.T., Phillips, J.L., Gary, S.P.: 1998, Electron temperature in the ambient solar wind: Typical properties and a lower bound at 1 AU. J. Geophys. Res. 103, 9553. DOI .

    Article  ADS  Google Scholar 

  • Ogilvie, K.W., Chornay, D.J., Fritzenreiter, R.J., Hunsaker, F., Keller, J., Lobell, J., et al.: 1995, SWE, A comprehensive plasma instrument for the Wind spacecraft. Space Sci. Rev. 71, 55. DOI .

    Article  ADS  Google Scholar 

  • Riley, P., Linker, J.A., Lionello, R., Mikić, Z., Odstrcil, D., Hidalgo, M.A., et al.: 2004, Fitting flux ropes to a global MHD solution: A comparison of techniques. J. Atmos. Solar-Terr. Phys. 66, 1321. DOI .

    Article  ADS  Google Scholar 

  • Sonnerup, B.U.Ö., Scheible, M.: 1998, Minimum and maximum variance analysis. In: Analysis Methods for Multi-Spacecraft Data, 185. ADS .

    Google Scholar 

  • Sonnerup, B.U.Ö., Hasegawa, H., Teh, W.-L., Hau, L.-N.: 2006, Grad–Shafranov reconstruction: An overview. J. Geophys. Res. 111, A09204. DOI .

    Article  ADS  Google Scholar 

  • Sturrock, P.A.: 1994, Plasma Physics: An Introduction to the Theory of Astrophysical, Geophysical and Laboratory Plasmas, Cambridge University Press, New York, 209. ADS .

    Book  Google Scholar 

  • van Ballegooijen, A.A., Mackay, D.H.: 2007, Model for the coupled evolution of subsurface and coronal magnetic fields in solar active regions. Astrophys. J. 659, 1713. DOI .

    Article  ADS  Google Scholar 

  • Vemareddy, P., Möstl, C., Amerstorfer, T., Mishra, W., Farrugia, C.J., Leitner, M.: 2016, Comparison of magnetic properties in a magnetic cloud and its solar source on 2013 April 11 – 14. Astrophys. J. 828(12), 3139. DOI .

    Article  Google Scholar 

  • Wang, Y., Zhou, Z., Shen, C., Liu, R., Wang, S.: 2015, Investigating plasma motion of magnetic clouds at 1 AU through a velocity-modified cylindrical force-free flux rope model. J. Geophys. Res. 120, 1543. DOI .

    Article  Google Scholar 

  • Wang, Y., Zhuang, B., Hu, Q., Liu, R., Shen, C., Chi, Y.: 2016, On the twists of interplanetary magnetic flux ropes observed at 1 AU. J. Geophys. Res. 121, 9316. DOI .

    Article  Google Scholar 

  • Yu, W., Farrugia, C.J., Lugaz, N., Galvin, A.B., Kilpua, E.K.J., Kucharek, H., et al.: 2014, A statistical analysis of properties of small transients in the solar wind 2007 – 2009: STEREO and Wind observations. J. Geophys. Res. 119, 689. DOI .

    Article  Google Scholar 

  • Yu, W., Farrugia, C.J., Galvin, A.B., Lugaz, N., Luhmann, J.G., Simunac, K.D.C., et al.: 2016, Small solar wind transients at 1 AU: STEREO observations (2007 – 2014) and comparison with near-Earth wind results (1995 – 2014). J. Geophys. Res. 121, 5005. DOI .

    Article  Google Scholar 

Download references

Acknowledgements

Support for this work came from the following grants: NASA STEREO Quadrature grant, NSF AGS-1435785, AGS-1433086 and AGS-1433213, and NASA NNX16AO04G, NNX15AB87G, and NNX15AU01G. C.M. thanks the Austrian Science Fund (FWF): [P26174-N27]. P.V. is supported by an INSPIRE grant of AORC scheme under Department of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. Farrugia.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, W., Farrugia, C.J., Lugaz, N. et al. The Magnetic Field Geometry of Small Solar Wind Flux Ropes Inferred from Their Twist Distribution. Sol Phys 293, 165 (2018). https://doi.org/10.1007/s11207-018-1385-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-018-1385-3

Keywords

Navigation