Skip to main content
Log in

Particle Acceleration in the Presence of Weak Turbulence at an X-Type Neutral Point

  • ADVANCES IN EUROPEAN SOLAR PHYSICS
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We simulate the likely noisy situation near a reconnection region by superposing many 2D linear reconnection eigenmodes. The superposition of modes on the steady state X-type magnetic field creates multiple X- and O-type neutral points close to the original neutral point and so increases the size of the non-adiabatic region. We study test particle trajectories of initially thermal protons in these fields. Protons become trapped in this region and are accelerated by the turbulent electric field to energies up to 1 MeV in time scales relevant to solar flares. Higher energies are achieved due to the interaction of particles with increasingly turbulent electric and magnetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Abramowitz, M., Stegun, I.A.: 1965, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical tables. Dover, New York.

    Google Scholar 

  • Aschwanden, M.J., Nightingale, R.W.: 2005, Elementary loop structures in the solar corona analyzed from TRACE triple-filter images. Astrophys. J. 633, 499 – 517.

    Article  ADS  Google Scholar 

  • Aschwanden, M.J., Fletcher, L., Schrijver, C.J., Alexander, D.: 1999, Coronal loop oscillations observed with the transition region and coronal explorer. Astrophys. J. 520, 880 – 894.

    Article  ADS  Google Scholar 

  • Bulanov, S.V., Syrovatskii, S.I.: 1980, MHD oscillations and waves near a magnetic null line. Sov. J. Plasma Phys. 6, 1205 – 1218.

    ADS  Google Scholar 

  • Chen, F.F., Torreblanca, H.: 1984, Introduction to Plasma Physics and Controlled Fusion, 2nd edn. Plenum, New York.

    Google Scholar 

  • Craig, I.J., Watson, P.G.: 1992, Fast dynamic reconnection at X-type neutral points. Astrophys. J. 393, 385 – 395.

    Article  ADS  Google Scholar 

  • Craig, I.J.D., McClymont, A.N.: 1991, Dynamic magnetic reconnection at an X-type neutral point. Astrophys. J. Lett. 371, L41 – L44.

    Article  ADS  Google Scholar 

  • Craig, I.J.D., McClymont, A.N.: 1993, Linear theory of fast reconnection at an X-type neutral point. Astrophys. J. 405, 207 – 215.

    Article  ADS  Google Scholar 

  • Dalla, S., Browning, P.K.: 2005, Particle acceleration at a three-dimensional reconnection site in the solar corona. Astron. Astrophys. 436, 1103 – 1111.

    Article  ADS  Google Scholar 

  • De Moortel, I., Ireland, J., Walsh, R.W.: 2000, Observation of oscillations in coronal loops. Astron. Astrophys. 355, L23 – L26.

    ADS  Google Scholar 

  • De Moortel, I., Ireland, J., Hood, A.W., Walsh, R.W.: 2002, The detection of 3 & 5 min period oscillations in coronal loops. Astron. Astrophys. 387, L13 – L16.

    Article  ADS  Google Scholar 

  • Foukal, P., Little, R., Gilliam, L.: 1987, Paschen-line Stark-broadening as an electric field diagnostic in erupting prominences. Solar Phys. 114, 65 – 73.

    ADS  Google Scholar 

  • Furth, H.P., Killeen, J., Rosenbluth, M.N.: 1963, Finite-resistivity instabilities of a Sheet Pinch. Phys. Fluids 6, 459 – 484.

    Article  ADS  Google Scholar 

  • Gruszecki, M., Vasheghani Farahani, S., Nakariakov, V.M., Arber, T.D.: 2011, Magnetoacoustic shock formation near a magnetic null point. Astron. Astrophys. 531, A63.

    Article  ADS  Google Scholar 

  • Guo, J.-N., Büchner, J., Otto, A., Santos, J., Marsch, E., Gan, W.-Q.: 2010, Is the 3-D magnetic null point with a convective electric field an efficient particle accelerator? Astron. Astrophys. 513, A73.

    Article  ADS  Google Scholar 

  • Hamilton, B., Fletcher, L., McClements, K.G., Thyagaraja, A.: 2005, Electron acceleration at reconnecting X-points in solar flares. Astrophys. J. 625, 496 – 505.

    Article  ADS  Google Scholar 

  • Hassam, A.B.: 1992, Reconnection of stressed magnetic fields. Astrophys. J. 399, 159 – 163.

    Article  ADS  Google Scholar 

  • Kanbach, G., Bertsch, D.L., Fichtel, C.E., Hartman, R.C., Hunter, S.D., Kniffen, D.A., Kwok, P.W., Lin, Y.C., Mattox, J.R., Mayer-Hasselwander, H.A.: 1993, Detection of a long-duration solar gamma-ray flare on June 11, 1991 with EGRET on COMPTON-GRO. Astron. Astrophys. Suppl. Ser. 97, 349 – 353.

    ADS  Google Scholar 

  • Lin, R.P., Krucker, S., Hurford, G.J., Smith, D.M., Hudson, H.S., Holman, G.D., Schwartz, R.A., Dennis, B.R., Share, G.H., Murphy, R.J., Emslie, A.G., Johns-Krull, C., Vilmer, N.: 2003, RHESSI observations of particle acceleration and energy release in an intense solar gamma-ray line flare. Astrophys. J. Lett. 595, L69 – L76.

    Article  ADS  Google Scholar 

  • Litvinenko, Y.E.: 1996, Particle acceleration in reconnecting current sheets with a nonzero magnetic field. Astrophys. J. 462, 997 – 1004.

    Article  ADS  Google Scholar 

  • Litvinenko, Y.E.: 2003, Particle acceleration by a time-varying electric field in merging magnetic fields. Solar Phys. 216, 189 – 203.

    Article  ADS  Google Scholar 

  • Liu, C., Wang, H.: 2009, Reconnection electric field and hardness of X-ray emission of solar flares. Astrophys. J. Lett. 696, L27 – L31.

    Article  ADS  Google Scholar 

  • McLaughlin, J., Hood, A., De Moortel, I.: 2010, Review article: MHD wave propagation near coronal null points of magnetic fields. Space Sci. Rev., 1 – 32.

  • Parker, E.N.: 1963, The solar-flare phenomenon and the theory of reconnection and annihilation of magnetic fields. Astrophys. J. 8, 177 – 211.

    Article  ADS  Google Scholar 

  • Petkaki, P.: 1996, Particle acceleration in dynamical collisionless reconnection. PhD thesis, University of Glasgow.

  • Petkaki, P., Freeman, M.P.: 2008, Nonlinear dependence of anomalous ion-acoustic resistivity on electron drift velocity. Astrophys. J. 686, 686 – 693.

    Article  ADS  Google Scholar 

  • Petkaki, P., MacKinnon, A.L.: 1997, Particle acceleration in dynamical collisionless reconnection. Solar Phys. 172, 279 – 286.

    Article  ADS  Google Scholar 

  • Petkaki, P., MacKinnon, A.L.: 2007, Particle acceleration by fluctuating electric fields at a magnetic field null point. Astron. Astrophys. 472, 623 – 632.

    Article  ADS  Google Scholar 

  • Petkaki, P., MacKinnon, A.L.: 2011, Acceleration of charged particles by fluctuating and steady electric fields in a X-type magnetic field. Adv. Space Res. 48, 884 – 898.

    Article  ADS  Google Scholar 

  • Petschek, H.E.: 1964, Magnetic field annihilation. NASA Spec. Publ. 50, 425 – 439.

    ADS  Google Scholar 

  • Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: 1992, Numerical recipes in FORTRAN. The Art of Scientific Computing. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Priest, E., Forbes, T.: 2000, Magnetic Reconnection. Cambridge University Press, Cambridge.

    Book  MATH  Google Scholar 

  • Somov, B.V., Oreshina, I.V., Kovalenko, I.A.: 2008, Magnetic reconnection, electric field, and particle acceleration in the July 14, 2000 solar flare. Astron. Lett. 34, 327 – 336.

    Article  ADS  Google Scholar 

  • Speiser, T.W.: 1965, Particle trajectories in model current sheets, 1, analytical solutions. J. Geophys. Res. 70, 4219 – 4226.

    Article  ADS  Google Scholar 

  • Sweet, P.A.: 1958, The neutral point theory of solar flares. In: Lehnert, B. (ed.) Electromagnetic Phenomena in Cosmical Physics, IAU Symposium 6, 123 – 134.

    Google Scholar 

  • Verwichte, E., Aschwanden, M.J., Van Doorsselaere, T., Foullon, C., Nakariakov, V.M.: 2009, Seismology of a large solar coronal loop from EUVI/STEREO observations of its transverse oscillation. Astrophys. J. 698, 397 – 404.

    Article  ADS  Google Scholar 

  • Vilmer, N., MacKinnon, A.L., Trottet, G., Barat, C.: 2003, High energy particles accelerated during the large solar flare of 1990 May 24: X/γ-ray observations. Astron. Astrophys. 412, 865 – 874.

    Article  ADS  Google Scholar 

  • Wang, R., Wang, J.: 2006, Spectra and solar energetic protons over 20 GeV in Bastille Day event. Astropart. Phys. 25, 41 – 46.

    Article  ADS  Google Scholar 

  • White, S.M., Benz, A.O., Christe, S., Fárnik, F., Kundu, M.R., Mann, G., Ning, Z., Raulin, J.-P., Silva-Válio, A.V.R., Saint-Hilaire, P., Vilmer, N., Warmuth, A.: 2011, The relationship between solar radio and hard X-ray emission. Space Sci. Rev. 159, 225 – 261.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

CAB acknowledges support from STFC and the British Antarctic Survey via a CASE studentship, and would like to thank Dr M. Freeman and Prof. Tom Van Doorsselaere for useful discussions. PP acknowledges support from the STFC Rolling Grant of Astrophysical Fluid Dynamics/Atomic Astrophysics Group (DAMTP). ALM thanks STFC for support through Rolling Grant ST/F002149/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Burge.

Additional information

Advances in European Solar Physics

Guest Editors: Valery M. Nakariakov, Manolis K. Georgoulis, and Stefaan Poedts

Appendices

Appendix A: The Hypergeometric Function

2 F 1(a,b;c;z) is given by Abramowitz and Stegun (1965), Chapter 15:

$$ _2F_1(a,b;c;z)= \displaystyle\sum \limits _{i=0}^n \frac{(a)_n(b)_n}{(c)_n}\frac{z^n}{n!},$$
(8)

where (x) n =x(x+1)(x+2)⋯(x+n−1). Equation (8) converges only for |z|<1. An efficient evaluation for |z|>1 is achieved via a transformation formula (Abramowitz and Stegun 1965):

(9)

For the calculation of the magnetic field perturbation, the derivative of the hypergeometric function is used, which is given by Abramowitz and Stegun (1965) as:

$$\frac{d}{dz}F(a,b;c;z)=\frac{ab}{c}F(a+1,b+1;c+1;z).$$

Appendix B: Explicit Forms of Electric and Magnetic Fields

The electric fields we use are the same as those given in Petkaki and MacKinnon (1997).

$$\overline{E_z}=A_0\bigl[\exp(-\kappa t)\bigl[\kappa \bigl(\cos(\omega t)f_\Re \sin(\omega t)f_\Im\bigr)+\omega \bigl(\cos(\omega t)f_\Im+\sin(\omega t)f_\Re\bigr)\bigr]\bigr],$$
(10)
(11)
(12)

A 0 is the amplitude of the fluctuation, which we have chosen to be 1×10−4 for all modes. η is the resistivity, f is the hypergeometric function and f′ is its derivative. Bars denote quantities which are in our dimensionless units.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burge, C.A., Petkaki, P. & MacKinnon, A.L. Particle Acceleration in the Presence of Weak Turbulence at an X-Type Neutral Point. Sol Phys 280, 575–590 (2012). https://doi.org/10.1007/s11207-012-9963-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-012-9963-2

Keywords

Navigation