Skip to main content

Advertisement

Log in

A Fast Model for the Reconstruction of Spectral Solar Irradiance in the Near- and Mid-Ultraviolet

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We present a model for the reconstruction of spectral solar irradiance between 200 and 400 nm. This model is an extension of the total solar irradiance (TSI) model of Crouch et al. (Astrophys. J. 677, 723, 2008) which is based on a data-driven Monte Carlo simulation of sunspot emergence, fragmentation, and erosion. The resulting time-evolving daily area distribution of magnetic structures of all sizes is used as input to a four-component irradiance model including contributions from the quiet Sun, sunspots, faculae, and network. In extending the model to spectral irradiance in the near- and mid-ultraviolet, the quiet Sun and sunspot emissivities are calculated from synthetic spectra at T eff=5750 K and 5250 K, respectively. Facular emissivities are calculated using a simple synthesis procedure proposed by Solanki and Unruh (Astron. Astrophys. 329, 747, 1998). The resulting time series of ultraviolet flux is calibrated against the data from the SOLSTICE instrument on the Upper Atmospheric Research Satellite (UARS). Using a genetic algorithm, we invert quiet Sun corrections, profile of facular temperature variations with height, and network model parameters which yield the best fit to these data. The resulting best-fit time series reproduces quite well the solar-cycle timescale variations of UARS ultraviolet observations, as well as the short-timescale fluctuations about the 81 day running mean. We synthesize full spectra between 200 and 400 nm, and validate these against the spectra obtained by the ATLAS-1 and ATLAS-3 missions, finding good agreement, to better than 3 % at most wavelengths. We also compare the UV variability predicted by our reconstructions in the descending phase of sunspot cycle 23 to SORCE/SIM data as well as to other reconstructions. Finally, we use the model to reconstruct the time series of spectral irradiance starting in 1874, and investigate temporal correlations between pairs of wavelengths in the bands of interest for stratospheric chemistry and dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Notes

  1. http://lasp.colorado.edu/sorce/data/ .

  2. http://solarscience.msfc.nasa.gov/greenwch.shtml .

References

  • Bogdan, T.J., Gilman, P.A., Lerche, I., Howard, R.: 1988, Distribution of sunspot umbral areas – 1917 – 1982. Astrophys. J. 327, 451.

    Article  ADS  Google Scholar 

  • Brandt, P.N., Stix, M., Weinhardt, H.: 1994, Modeling solar irradiance variations with an area dependant photometric sunspot index. Solar Phys. 152, 119.

    Article  ADS  Google Scholar 

  • Chapman, G.A.: 1980, Variations in the solar constant due to solar active regions. Astrophys. J. Lett. 242, L45.

    Article  ADS  Google Scholar 

  • Chapman, G.A., Cookson, A.M., Dobias, J.J.: 1996, Variations in total solar irradiance during cycle 22. J. Geophys. Res. 101, 13541.

    Article  ADS  Google Scholar 

  • Charbonneau, P.: 2002, An introduction to genetic algorithms for numerical optimization. NCAR Technical Note 450+IA, 311.

  • Charbonneau, P., Knapp, B.: 1995, A user’s guide to PIKAIA 1.0. NCAR Technical Note 418+IA, 311.

  • Crouch, A.D., Charbonneau, P., Thibault, K.: 2007, Supergranulation as an emergent length scale. Astrophys. J. 662, 715.

    Article  ADS  Google Scholar 

  • Crouch, A.D., Charbonneau, P., Beaubien, G., Paquin-Ricard, D.: 2008, A model for the total solar irradiance based on active region decay. Astrophys. J. 677, 723.

    Article  ADS  Google Scholar 

  • Cubasch, U., Voss, R.: 2000, The influence of total solar irradiance on climate. Space Sci. Rev. 94, 185.

    Article  ADS  Google Scholar 

  • DeLand, M.T., Cebula, R.P.: 2008, Creation of a composite solar ultraviolet irradiance data set. J. Geophys. Res. 113, A11103.

    Article  ADS  Google Scholar 

  • DeLand, M.T., Floyd, L.E., Rottman, G.J., Pap, J.M.: 2004, Status of UARS solar UV irradiance data. Adv. Space Res. 34, 243.

    Article  ADS  Google Scholar 

  • Fontenla, J.M., Avrett, E.H., Loeser, R.: 1993, Energy balance in the solar transition region. III. Helium emission in hydrostatic, constant-abundance models with diffusion. Astrophys. J. 406, 319.

    Article  ADS  Google Scholar 

  • Fontenla, J.M., White, O.R., Fox, P.A., Avrett, E.H., Kurucz, R.L.: 1999, Calculation of solar irradiances. I. Synthesis of the solar spectrum. Astrophys. J. 518, 480.

    Article  ADS  Google Scholar 

  • Fontenla, J.M., Curdt, W., Haberreiter, M., Harder, J., Tian, H.: 2009, Semiempirical models of the solar atmosphere. III. Set of non-LTE models for far-ultraviolet/extreme-ultraviolet irradiance computation. Astrophys. J. 707, 482.

    Article  ADS  Google Scholar 

  • Forster, P., Ramaswamy, V., Artaxo, P., Bernsten, T., Betts, R., Fahey, D.W., et al.: 2007, Changes in atmospheric constituents and in radiative forcing. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.I. (eds.) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 188 – 193.

    Google Scholar 

  • Fröhlich, C., Lean, J.: 2004, Solar radiative output and its variability: Evidence and mechanisms. Astron. Astrophys. Rev. 12, 273.

    Article  ADS  Google Scholar 

  • Fröhlich, C., Pap, J.M., Hudson, H.: 1994, Improvement of the photometric sunspot index and changes of the disk-integrated sunspot contrast with time. Solar Phys. 152, 111.

    Article  ADS  Google Scholar 

  • Ghizaru, M., Charbonneau, P., Smolarkiewicz, P.K.: 2010, Magnetic cycles in global large-eddy simulations of solar convection. Astrophys. J. Lett. 715, L133.

    Article  ADS  Google Scholar 

  • Haberreiter, M., Krivova, N.A., Schmutz, W., Wenzler, T.: 2005, Reconstruction of the solar UV irradiance back to 1974. Adv. Space Res. 35, 365.

    Article  ADS  Google Scholar 

  • Haigh, J.D.: 1994, The role of stratospheric ozone in modulating the solar radiative forcing of climate. Nature 370, 544.

    Article  ADS  Google Scholar 

  • Haigh, J.D.: 2001, Climate variability and the influence of the Sun. Science 294, 2109.

    Article  Google Scholar 

  • Haigh, J.D., Winning, A.R., Toumi, R., Harder, J.W.: 2010, An influence of solar spectral variations on radiative forcing of climate. Nature 467, 696.

    Article  ADS  Google Scholar 

  • Harder, J.W., Fontenla, J.M., Pilewski, P., Richard, E.C., Woods, T.N.: 2009, Trends in solar spectral irradiance variability in the visible and infrared. Geophys. Res. Lett. 36, L07801.

    Article  Google Scholar 

  • Harder, J.W., Thuillier, G., Richard, E.C., Brown, S.W., Lykke, K.R., Snow, M., McClintock, W.E., Fontenla, J.M., Woods, T.N., Pilewski, P.: 2010, The SORCE SIM solar spectrum: Comparison with recent observations. Solar Phys. 263, 3.

    Article  ADS  Google Scholar 

  • Hudson, H.S., Silva, S., Woodard, M., Willson, R.C.: 1982, The effect of sunspots on solar irradiance. Solar Phys. 76, 211.

    ADS  Google Scholar 

  • Hufbauer, K.: 1991, Exploring the Sun: Solar Science since Galileo, The Johns Hopkins University Press, Baltimore, 135 – 144.

    Google Scholar 

  • Kopp, G., Lawrence, G., Rottman, G.: 2005, The Total Solar Irradiance Monitor (TIM): Science results. Solar Phys. 230, 129.

    Article  ADS  Google Scholar 

  • Krivova, N.A., Solanki, S.K., Wenzler, T., Podlipnik, B.: 2009, Reconstruction of solar UV irradiance since 1974. J. Geophys. Res. 114, 1.

    Article  Google Scholar 

  • Kurucz, R.L.: 1993, ftp://ftp.stsci.edu/cdbs/grid/k93models/kp00/ .

  • Kyle, H.L., Hoyt, D.V., Hickey, J.R.: 1994, A review of the Nimbus-7 ERB solar dataset. Solar Phys. 152, 9.

    Article  ADS  Google Scholar 

  • Lean, J.: 1991, Variations in the Sun’s radiative output. Rev. Geophys. 29, 505.

    Article  ADS  Google Scholar 

  • Lean, J.: 2000, Short-term, direct indices of solar variability. Space Sci. Rev. 94, 39.

    Article  ADS  Google Scholar 

  • Lean, J., Rind, D.: 2002, Earth’s response to a variable Sun. Science 292, 234.

    Article  Google Scholar 

  • Lean, J., Cook, J., Marquette, W., Johannesson, A.: 1998, Magnetic sources of the solar irradiance cycle. Astrophys. J. 492, 390.

    Article  ADS  Google Scholar 

  • Muncaster, R., Bourqui, M.S., Chabrillat, S., Viscardy, S., Melo, S., Charbonneau, P.: 2011, Modelling the effects of (short-term) solar variability on stratospheric chemistry. Atmos. Chem. Phys. Discuss. 11, 32455.

    Article  ADS  Google Scholar 

  • Oster, L.: 1983, Solar irradiance variations. II. – Analysis of the extreme ultraviolet measurements onboard the Atmosphere Explorer E satellite. J. Geophys. Res., 9037.

  • Rind, D.: 2002, The Sun’s role in climate variations. Science 296, 673.

    Article  ADS  Google Scholar 

  • Rottman, G.J., Woods, T.N., Sparn, T.P.: 1993, Solar-Stellar Irradiance Comparison Experiment 1: I. Instrument design and calibration. J. Geophys. Res. 98, 10667.

    Article  ADS  Google Scholar 

  • Rottman, G.J., Woods, T.N., Snow, M., de Toma, G.: 2001, The solar cycle variation in ultraviolet irradiance. Adv. Space Res. 27, 1927.

    Article  ADS  Google Scholar 

  • Rottman, G.J., Harder, J.W., Fontenla, J., Woods, T., White, O.R., Lawrence, G.M.: 2005, The Spectral Irradiance Monitor (SIM): Early observations. Solar Phys. 230, 205.

    Article  ADS  Google Scholar 

  • Semeniuk, K., Fomichev, V.I., McConnell, J.C., Fu, C., Melo, S.M.L., Usoskin, I.G.: 2011, Middle atmosphere response to the solar cycle in irradiance and ionizing particle precipitation. Atmos. Chem. Phys. 11, 5045.

    Article  ADS  Google Scholar 

  • Solanki, S.K., Krivova, N.A., Wenzler, T.: 2005, Irradiance models. Adv. Space Res. 35, 376.

    Article  ADS  Google Scholar 

  • Solanki, S.K., Unruh, Y.C.: 1998, A model of the wavelength dependence of solar irradiance variations. Astron. Astrophys. 329, 747.

    ADS  Google Scholar 

  • Tapping, K., Boteler, D., Charbonneau, P., Crouch, A., Manson, A., Paquette, H.: 2007, Solar magnetic activity and total solar irradiance since the Maunder minimum. Solar Phys. 246, 309.

    Article  ADS  Google Scholar 

  • Thibault, K., Charbonneau, P., Crouch, A.D.: 2012, The build-up of a scale-free photospheric magnetic network. Astrophys. J. in preparation.

  • Thuillier, G., Joukoff, A., Schmutz, W.: 2003, The PICARD mission. In: Wilson, A. (ed.) International Solar Cycle Studies (ISCS) Symposium, ASP Conf. Ser. 535, 251.

    Google Scholar 

  • Thuillier, G., Hersé, M., Simon, P.C., Labs, D., Mandel, H., Gillotay, D.: 1997, Observation of the UV solar spectral irradiance between 200 and 350 nm during the ATLAS 1 mission by the SOLSPEC spectrometer. Solar Phys. 171, 283.

    Article  ADS  Google Scholar 

  • Thuillier, G., Hersé, M., Labs, D., Foujols, T., Peetermans, W., Gillotay, D., Simon, P.C., Mandel, H.: 2003, The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECA missions. Solar Phys. 214, 1.

    Article  ADS  Google Scholar 

  • Thuillier, G., DeLand, M., Shapiro, A., Schmutz, W., Bolsée, D., Melo, S.: 2012, The solar spectral irradiance as a function of the Mg ii index for atmosphere and climate modelling. Solar Phys. 277, 245.

    Article  ADS  Google Scholar 

  • Unruh, Y.C., Krivova, N.A., Solanki, S.K., Harder, J.W., Kopp, G.: 2008, Spectral irradiance variations: Comparison between observations and the SATIRE model on solar rotation time scales. Astron. Astrophys. 486, 311.

    Article  ADS  Google Scholar 

  • Willson, R.C., Hudson, H.S.: 1988, Solar luminosity variations in solar cycle 21. Nature 332, 810.

    Article  ADS  Google Scholar 

  • Willson, R.C., Hudson, H.S.: 1991, The Sun’s luminosity over a complete solar cycle. Nature 351, 42.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Gerard Thuillier for kindly making available to us his full solar spectra from ATLAS-1 and ATLAS-3, as well as for numerous useful discussions; Jerry Harder for providing illuminating explanations concerning residual artifacts due to calibration uncertainties in SOLSTICE and SORCE data; the UARS/SOLSTICE team for granting open and user-friendly access to their data; and an anonymous referee for useful comments and suggestions that led to improvements in our reconstructions. We also wish to acknowledge significant contributions by Benedict Plante and Xavier Fabian in the early stages of this project. This work was supported by Canada’s Natural Sciences and Engineering Research Council, Research Chair Program, the Programme de Recherche en Équipe of the Fonds de Recherche sur la Nature et Technologie (Québec, Grant 119078), as well as by the Space Science Enhancement Program of the Canadian Space Agency (Grant 9SCIGRA-21).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Bolduc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bolduc, C., Charbonneau, P., Dumoulin, V. et al. A Fast Model for the Reconstruction of Spectral Solar Irradiance in the Near- and Mid-Ultraviolet. Sol Phys 279, 383–409 (2012). https://doi.org/10.1007/s11207-012-0019-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-012-0019-4

Keywords

Navigation