Skip to main content
Log in

Solar Magnetic Activity and Total Irradiance Since the Maunder Minimum

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We develop a model for estimating solar total irradiance since 1600 AD using the sunspot number record as input, since this is the only intrinsic record of solar activity extending back far enough in time. Sunspot number is strongly correlated, albeit nonlinearly with the 10.7-cm radio flux (F 10.7), which forms a continuous record back to 1947. This enables the nonlinear relationship to be estimated with usable accuracy and shows that relationship to be consistent over multiple solar activity cycles. From the sunspot number record we estimate F 10.7 values back to 1600 AD. F 10.7 is linearly correlated with the total amount of magnetic flux in active regions, and we use it as input to a simple cascade model for the other magnetic flux components. The irradiance record is estimated by using these magnetic flux components plus a very rudimentary model for the modulation of energy flow to the photosphere by the subphotospheric magnetic flux reservoir feeding the photospheric magnetic structures. Including a Monte Carlo analysis of the consequences of measurement and fitting errors, the model indicates the mean irradiance during the Maunder Minimum was about 1 ± 0.4 W m−2 lower than the mean irradiance over the last solar activity cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, R.Y.: 1991, Solar variability captured in climatic and high-resolution palaeoclimatic records: a geologic perspective. In: Sonett, C.P., Giampapa, M.S., Matthews, M.S. (eds.) The Sun in Time, University of Arizona Press, Tucson, 543 – 561.

    Google Scholar 

  • Antia, H.M.: 2003, Does the Sun shrink with increasing magnetic activity?. Astrophys. J. 590, 567.

    Article  ADS  Google Scholar 

  • Beer, J., Blinov, A., Bonani, G., Finkel, R.C., Hofmann, H.J., Lehmann, B., Oeschger, H., Sigg, A., Schwander, J., Staffelbach, T., Staufer, B., Suter, M., Wolfi, W.: 1990, Use of 10Be in polar ice to trace the 11-year cycle of solar activity. Nature 347, 164 – 166.

    Article  ADS  Google Scholar 

  • Castenmiller, M.J.M., Zwaan, C., van der Zalm, E.B.J.: 1986, Sunspot nests. Manifestations of sequences of magnetic activity. Solar Phys. 105, 237 – 255.

    Article  ADS  Google Scholar 

  • Delache, P., Lacrare, F., Sadsaout, H.: 1986, Long periods in diameter, irradiance and activity of the Sun. In: Christensen-Dalsgaard J., Frandsen S. (eds.) Advances in Asterioseismology, IAU Press, 223 – 226.

  • Eddy, J.A.: 1976a, The Maunder minimum. Science 192, 1189 – 1202.

    Article  ADS  Google Scholar 

  • Eddy, J.A.: 1976b, The Sun since the bronze age. In: Williams, D.G. (ed.) Physics of Solar Planetary Environments, American Geophysical Union, Washington, 958 – 972.

    Google Scholar 

  • Eddy, J.A.: 1977, Historical evidence for the existence of the solar cycle. In: White, O.R. (ed.) The Solar Output and its Variation, University of Colorado Associated University Press, Boulder, 51 – 71.

    Google Scholar 

  • Eddy, J.A.: 1979, The new Sun: the solar results form skylab, NASA-SP 402.

  • Eddy, J.A.: 1980, The historical record of solar activity. In: Pepin, R.O., Eddy, J.A., Merril, R.B. (eds.) The Ancient Sun: Fossil Record in the Sun, Moon and Meteorites, Pergamon, New York, 119 – 134.

    Google Scholar 

  • Fligge, M., Solanki, S.K., Unruh, Y.C.: 2000, Modelling short-term spectral irradiance variations. Space Sci. Rev. 94, 139 – 142.

    Article  ADS  Google Scholar 

  • Foster, S.S.: 2004, Reconstruction of solar irradiance variations, for use in studies of global climate change: application of recent SOHO observations with historic data from the Greenwich Observatory. Ph.D. Thesis, University of Southampton, UK.

  • Foukal, P., Lean, J.: 1988, Magnetic modulation of solar luminosity by photospheric activity. Astrophys. J. 328, 347 – 357.

    Article  ADS  Google Scholar 

  • Foukal, P., Lean, J.: 1990, An empirical model of total irradiance variation between 1874 and 1988. Science 247, 505 – 604.

    Article  Google Scholar 

  • Foukal, P., Spruit, H.: 2004, Comment on ‘Variations of total irradiance produced by structural changes in the solar interior’. EOS Trans. AGU 49, 524.

    ADS  Google Scholar 

  • Fox, P.: 2004, Solar activity and irradiance variations. In: Pap, J.M., Fox, P. (eds.) Solar Variability and its Effects on Climate, Geophysical Monograph Series 141, American Geophysical Union, Washington, 141 – 170.

    Google Scholar 

  • Fox, P., Sofia, S.: 1994, Convection and irradiance variations. In: Pap, J.M., Hudson, H.S., Solanki, S.K. (eds.) The Sun as a Variable Star: Solar and Stellar Irradiance Variations, Cambridge University Press, Cambridge, 280 – 290.

    Google Scholar 

  • Fröhlich, C.: 1994, Irradiance variations in the Sun. In: Pap, J.M., Hudson, H.S., Solanki, S.K. (eds.) The Sun as a Variable Star: Solar and Stellar Irradiance Variations, Cambridge University Press, Cambridge, 28 – 36.

    Google Scholar 

  • Fröhlich, C.: 2004, Solar irradiance variability. In: Pap, J.M., Fox, P. (eds.) Solar Variability and its Effects on Climate, Geophysical Monograph Series 141, American Geophysical Union, Washingston, 97 – 110.

    Google Scholar 

  • Fröhlich, C., Lean, J.: 1998a, Total solar irradiance variations. In: Deubner, F.L. et al. (eds.) New Eyes to See Inside the Sun and Stars, Proceedings IAU Symposium 185, Kyoto, August 1997, Kluwer Academic, Dordrecht, 89 – 102.

    Google Scholar 

  • Fröhlich, C., Lean, J.: 1998b, The Sun’s total irradiance: cycles, trends and related climate change uncertainties since 1978. Geophys. Res. Lett. 25, 4377 – 4380.

    Article  ADS  Google Scholar 

  • Fröhlich, C., Foukal, P.V., Hickey, J.R., Hudson, H.S., Willson, R.C.: 1991, Solar irradiance variability from modern measurements. In: Sonett, C.P., Giampapa, M.S., Matthews, M.S. (eds.) The Sun in Time, University of Arizona Press, Tucson, 11 – 29.

    Google Scholar 

  • Gaizauskas, V., Harvey, K.L., Harvey, J.W., Zwaan, C.: 1983, Large-scale patterns formed by active regions during the ascending phase of Cycle 21. Astrophys, J. 265, 1056 – 1065.

    Article  ADS  Google Scholar 

  • Giampapa, M.: 2004, Stellar analogs of solar activity: the Sun in a stellar context. In: Rüedi, Güdel, Schmutz (eds.) The Sun, Solar Analogs and the Climate, Saas-Fee Advanced Course 34, Springer, New York, 109 – 306.

    Google Scholar 

  • Harvey, K.L.: 1992, Measurement of solar magnetic fields as an indicator of solar activity evolution. In: Donnelly, R.F. (ed.) Proceedings of the Workshop on the Solar Electromagnetic Radiation Study for Solar Cycle 22, NOAA/ERL/SEL, Boulder, 113 – 129.

    Google Scholar 

  • Harvey, K.L.: 1994, Irradiance models based upon solar magnetic fields. In: Pap, J.M., Hudson, H.S., Solanki, S.K. (eds.) The Sun as a Variable Star: Solar and Stellar Irradiance Variations, Cambridge University Press, Cambridge, 217 – 225.

    Google Scholar 

  • Hoyt, D., Schatten, K.: 1993, A discussion of plausible irradiance variations 1700 – 1992. J. Geophys. Res. 98, 18895 – 18906.

    Article  ADS  Google Scholar 

  • Hoyt, D.V., Schatten, K.H.: 1995a, Overlooked sunspot observations by Helvelius in the early Maunder Minimum, 1653 – 1684. Solar Phys. 160, 371 – 378.

    Article  ADS  Google Scholar 

  • Hoyt, D.V., Schatten, K.H.: 1995b, Observations of sunspots by Flamsteed during the Maunder Minimum. Solar Phys. 160, 379 – 385.

    Article  ADS  Google Scholar 

  • Hoyt, D.V., Schatten, K.H.: 1996, How well was the Maunder Minimum observed?. Solar Phys. 165, 181 – 192.

    Article  ADS  Google Scholar 

  • Hoyt, D.V., Schatten, K.H.: 1998a, Group sunspot numbers: a new solar activity reconstruction. Solar Phys. 179, 189 – 219.

    Article  ADS  Google Scholar 

  • Hoyt, D.V., Schatten, K.H.: 1998b, Group sunspot numbers: a new solar activity reconstruction. Solar Phys. 181, 491 – 512.

    Article  ADS  Google Scholar 

  • Krivova, N.A., Balmaceda, Solanki, S.K.: 2007, Reconstruction of solar total irradiance since 1700 from surface magnetic flux. Astron. Astrophys. 467, 335 – 346.

    Article  ADS  Google Scholar 

  • Krüger, A.: 1979, Introduction to Solar Radio Astronomy and Radio Phys., Reidel, Dordrecht.

    Google Scholar 

  • Kuhn, J.: 1996, Global changes in the Sun. In: Roca-Cortés, T. (ed.) The Structure of the Sun: VI Winter School at the Instituto d’Astrophysica de Canarias, Cambridge University Press, Cambridge, 231 – 278.

    Google Scholar 

  • Kundu, M.R.: 1965, Solar Radio Astronomy, Wiley, New York.

    Google Scholar 

  • Lean, J.: 2000, Evolution of the Sun’s spectral irradiance since the Maunder Minimum. Geophys. Res. Lett. 27, 2425 – 2428.

    Article  ADS  Google Scholar 

  • Lean, J., Beer, J., Bradley, R.: 1995, Reconstruction of solar irradiance since 1610: implications for climate change. Geophys. Rev. Lett. 22, 3195 – 3198.

    Article  ADS  Google Scholar 

  • Lean, J.L., Cook, J., Marquette, W., Johanneson, A.: 1998, Magnetic sources of the solar irradiance cycle. Astrophys. J. 492, 390 – 401.

    Article  ADS  Google Scholar 

  • Lockwood, M.: 2004, Solar outputs, their variations and their effects on Earth. In: Rüedi, Güdel, Schmutz (eds.) The Sun, Solar Analogs and the Climate, Saas-Fee Advanced Course 34, Springer, New York, 307 – 415.

    Google Scholar 

  • Lockwood, M., Stamper, R.: 1999, Long-term drift of the coronal source magnetic flux and total solar irradiance. Geophys. Res. Lett. 26, 2461 – 2464.

    Article  ADS  Google Scholar 

  • Pap, J.M., Fröhlich, C.: 1999, Total solar irradiance variations. J. Atmos. Solar-Terr. Phys. 61, 15 – 24.

    Article  ADS  Google Scholar 

  • Parker, E.N.: 1994a, Origins of the solar magnetic field. In: Schüssler, M., Schmidt, W. (eds.) Solar Magnetic Fields, Cambridge University Press, Cambridge, 94 – 97.

    Google Scholar 

  • Parker, E.N.: 1994b, Theoretical interpretation of magnetic activity. In: Pap, J.M., Hudson, H.S., Solanki, S.K. (eds.) The Sun as a Variable Star: Solar and Stellar Irradiance Variations, Cambridge University Press, Cambridge, 264 – 269.

    Google Scholar 

  • Ribes, E., Mein, P., Mangeney, A.: 1985, A large-scale meridional circulation in the convective zone. Nature 318, 170 – 171.

    Article  ADS  Google Scholar 

  • Schatten, K., Orosz, J.A.: 1990, Solar cycle secular changes. Solar Phys. 125, 179 – 184.

    Article  ADS  Google Scholar 

  • Sofia, S.: 2004, Variations of total solar irradiance produced by structural changes in the solar interior. EOS Trans. AGU 22, 217.

    ADS  Google Scholar 

  • Sofia, S., Li, L.: 2004, Solar variability caused by structural changes in the convection zone. In: Solar Variability and its Effects on Climate, Geophysical Monograph Series 141, 15 – 31.

  • Solanki, S.K., Fligge, M.: 1998, Solar irradiance since 1874 revisited. Geophys. Res. Lett. 25, 341 – 344.

    Article  ADS  Google Scholar 

  • Solanki, S.K., Fligge, M.: 1999, A reconstruction of total solar irradiance since 1700. Geophys. Res. Lett. 26, 2465 – 2468.

    Article  ADS  Google Scholar 

  • Solanki, S.K., Krivova, N.: 2004, Solar irradiance variations: current measurements to long-term estimates. Solar Phys. 224, 197 – 208.

    Article  ADS  Google Scholar 

  • Solanki, S.K., Schüssler, M., Fligge, M.: 2000, Evolution of the Sun’s large-scale magnetic field since the Maunder Minimum. Nature 408, 445 – 447.

    Article  ADS  Google Scholar 

  • Solanki, S.K., Schüssler, M., Fligge, M.: 2002, Secular variation of the Sun’s magnetic flux. Astron. Astrophys. 383, 706 – 712.

    Article  ADS  Google Scholar 

  • Spruit, H.: 2000, Theory of solar irradiance variations. Space Sci. Rev. 94, 113 – 126.

    Article  ADS  Google Scholar 

  • Tapping, K.F.: 1987, Recent solar radio astronomy at centimeter wavelengths: the temporal variability of the 10.7-cm flux. J. Geophys. Res. 92, No. D1, 829 – 838.

    Google Scholar 

  • Tapping, K.F., Cameron, H.T., Willis, A.G.: 2003, S-component sources at 21 cm wavelength in the rising phase of Cycle 23. Solar Phys. 215, 357 – 383.

    Article  ADS  Google Scholar 

  • Tapping, K.F., Harvey, K.L.: 1994, Slowly-varying microwave emissions from the solar corona. In: Pap, J.M., Hudson, H.S., Solanki, S.K. (eds.) The Sun as a Variable Star: Solar and Stellar Irradiance Variations, University Press, Cambridge, 182 – 195.

    Google Scholar 

  • Tapping, K.F., Zwann, C.: 2001, Sources of the slowly-varying component of solar microwave emission and their relationship with their host active regions. Solar Phys. 199, 317 – 344.

    Article  ADS  Google Scholar 

  • Ulrich, R., Bertello, L.: 1995, Solar cycle dependence of the Sun’s photospheric radius in the neutral iron spectral line of 525.5 nm. Nature 377, 214 – 215.

    Article  ADS  Google Scholar 

  • Willson, R.C., Hudson, H.S.: 1991, The Sun’s luminosity over a complete solar cycle. Nature 351, 42 – 44.

    Article  ADS  Google Scholar 

  • Zhang, Q., Soon, W.H., Baliunas, S.L., Lockwood, G.W., Skiff, B.A.: 1994, A method of determining possible brightness variations of the Sun in past centuries from observations of solar-type stars.. Astrophys. J. 427, L111 – L114.

    Article  ADS  Google Scholar 

  • Zwaan, C., Harvey, K.L.: 1994, Patterns in the solar magnetic field. In: Schüssler, M., Schmidt, W. (eds.) Solar Magnetic Fields, Cambridge University Press, Cambridge, 27 – 48.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. F. Tapping.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tapping, K.F., Boteler, D., Charbonneau, P. et al. Solar Magnetic Activity and Total Irradiance Since the Maunder Minimum. Sol Phys 246, 309–326 (2007). https://doi.org/10.1007/s11207-007-9047-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-007-9047-x

Keywords

Navigation