Skip to main content
Log in

Improving the computation of the gravitational terrain effect close to ground stations in the GTE software

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

The precise computation of the vertical gravitational attraction of the topographic masses (terrain correction) is still being studied both for geodetic and geophysical applications. In fact, it is essential in high precision geoid estimation by means of the well-known remove-compute-restore technique, which is used to isolate the gravitational effects of anomalous masses in exploration geophysics. The terrain correction can be evaluated exploiting a Digital Terrain Model (DTM) in different ways, such as classical numerical integration, prisms, tesseroids, polyhedrons, and/or Fast Fourier Transform techniques. The increasing resolution of recently developed DTMs, the increasing number of observation points, and the increasing accuracy of gravity data represent, nowadays, major challenges for the terrain correction computation. Classical point mass approximation and prism based-algorithms are indeed too slow, while Fourier-based algorithms are usually too much approximate when compared to the required accuracy. In this work, we improve the Gravity Terrain Effects (GTE) algorithm, the innovative tool that exploits a combined prism-Fast Fourier Transform approach especially developed for airborne gravimetry, to compute the terrain correction on the surface of the DTM (i.e. corresponding to the ground stations and/or its vicinity). This required development of a proper adjustment of the algorithms implemented within the GTE software and also to define and implement a procedure to overcome the problems of the computation of the gravitational effects due to the actual slope of the terrain close to the stations. The latter problem is thoroughly discussed and solved by testing different solutions like concentric cylindrical rings, triangulated polyhedrons, or ultra-high resolution squared prisms. Finally, numerical tests to prove the temporal efficiency and the computational performances of the improved GTE software to compute terrain correction for ground stations are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam D., 2002. Gravity measurement: amazing GRACE. Nature, 416(6876), 10–11, DOI: 10.1038/416010a.

    Article  Google Scholar 

  • Asgharzadeh M.F., von Frese R.R.B., Kim H.R., Leftwich T.E. and Kim J.W., 2007. Spherical prism gravity effects by Gauss-Legendre quadrature integration. Geophys. J. Int., 169, 1–11, DOI: 10.1111/j.1365-246X.2007.03214.x.

    Article  Google Scholar 

  • Biagi L. and Sansò F., 2000. Tclight: a new technique for fast rtc computation. In: Sideris M.G. (Ed.), Gravity, Geoid and Geodynamics 2000. International Association of Geodesy Symposia 123, 61–66, Springer-Verlag, Berlin, Germany, DOI: 10.1007/978-3-662-04827-6_10.

    Google Scholar 

  • Chai Y. and Hinze W.J., 1988. Gravity inversion of an interface above which the density contrast varies exponentially with depth. Geophysics, 53, 837–845.

    Article  Google Scholar 

  • Coggon J.H., 1976. Magnetic and gravity anomalies of polyhedra. Geoexploration, 14, 93–105, DOI: 10.1016/0016-7142(76)90003-X.

    Article  Google Scholar 

  • D’Urso M.G., 2014. Analytical computation of gravity effects for polyhedral bodies. J. Geodesy, 88, 13–29.

    Article  Google Scholar 

  • D’Urso M.G., 2015. The gravity anomaly of a 2D polygonal body having density contrast given by polynomial functions. Surv. Geophys., 36, 391–425.

    Article  Google Scholar 

  • Dorman L.M. and Lewis B.T., 1974. The use of nonlinear functional expansions in calculation of the terrain effect in airborne and marine gravimetry and gradiometry. Geophysics, 39, 33–38, DOI: 10.1190/1.1440409.

    Article  Google Scholar 

  • Drinkwater M., Floberghagen R., Haagmans R., Muzi D. and Popescu A., 2003. GOCE: ESA’s first Earth explorer core mission. In: Beutler G., Drinkwater M.R., Rummel R. and von Steiger R. (Eds), Earth Gravity Field from Space-from Sensors to Earth Sciences. Kluwer Academic Publishers, Dordrecht, The Netherlands, 419–432.

    Google Scholar 

  • Forsberg, R., 1986. Spectral properties of the gravity field in the nordic countries. Bollettino di Geodesia e Scienze Affini, 45, 361–383.

    Google Scholar 

  • Forsberg R. and Tscherning C.C., 2008. An overview manual for the GRAVSOFT Geodetic Gravity Field Modelling Programs. 2nd Edition. Contract Report for JUPEM (http://cct.gfy.ku.ak /publ_cct/cct1936.pdf).

    Google Scholar 

  • Frigo M. and Johnson S.G., 1998. FFTW: an adaptive software architecture for the FFT. Proceedings of the 1998 IEEE International Conference on Acoustics, Speech, and Signal Processing, 3, 1381–1384.

    Article  Google Scholar 

  • Garcia-Abdeslem J., 2005. The gravitational attraction of a right rectangular prism with density varying with depth following a cubic polynomial. Geophysics, 70, J39–J42.

    Article  Google Scholar 

  • Götze H-J., Keller F., Lahmeyer B. and Rosenbach O., 1982. Interactive modeling and interpretation of three-dimensional gravity data. SEG Technical Program Expanded Abstracts 1982, 343–344, DOI: 10.1190/1.1826967.

    Google Scholar 

  • Götze H-J. and Lahmeyer B., 1988. Application of three-dimensional interactive modeling in gravity and magnetics. Geophysics, 53, 1096–1108, DOI: 10.1190/1.1442546.

    Article  Google Scholar 

  • Harrison J.C. and Dickinson M., 1989. Fourier transform methods in local gravity modeling. Bull. Geod., 63, 149–166, DOI: 10.1007/BF02519148.

    Article  Google Scholar 

  • Heck B. and Seitz K., 2007. A comparison of the tesseroid, prism and point-mass approaches for mass reductions in gravity field modelling. J. Geodesy, 81, 121–136, DOI: 10.1007/s00190-006-0094-0.

    Article  Google Scholar 

  • Heiskanen W.A. and Moritz H., 1967. Physical geodesy. Bull. Géod., 86, 491–492, DOI: 10.1007/BF02525647.

    Article  Google Scholar 

  • Hinze W.J., Aiken C., Brozena J., Coakley B., Dater D., Flanagan G., Forsberg R., Hildenbrand T., Keller G.R., Kellogg J., Robert K., Xiong L., Andre M., Robert M., Mark P., Donald P., Dhananjay R., Daniel R., Jamie U-G., Marc V., Michael W. and Daniel W., 2005. New standards for reducing gravity data: The North American gravity database. Geophysics, 70, J25–J32, DOI: 10.1190/1.1988183.

    Article  Google Scholar 

  • Hjelt S.E., 1974. The gravity anomaly of a dipping prism. Geoexploration, 12, 29–39, DOI: 10.1016/0016-7142(74)90004-0.

    Article  Google Scholar 

  • Hofmann-Wellenhof B. and Moritz H., 2006. Physical Geodesy. Springer-Verlag, Wien, Austria.

    Google Scholar 

  • Huang J., Vaníček P., Pagiatakis S.D. and Brink W., 2001. Effect of topographical density on geoid in the Canadian Rocky Mountains. J. Geodesy, 74, 805–815, DOI: 10.1007/s001900000145.

    Article  Google Scholar 

  • Nagy D., Papp G. and Benedek J., 2000. The gravitational potential and its derivatives for the prism. J. Geodesy, 74, 552–560, DOI: 10.1007/s001900000116.

    Article  Google Scholar 

  • Novák P. and Grafarend E.W., 2005. Ellipsoidal representation of the topographical potential and its vertical gradient. J. Geodesy, 78, 691–706, DOI: 10.1007/s00190-005-0435-4.

    Article  Google Scholar 

  • Parker R.L., 1973. The rapid calculation of potential anomalies. Geophys. J. Int., 31, 447–455, DOI: 10.1111/j.1365-246X.1973.tb06513.x.

    Article  Google Scholar 

  • Pohánka V., 1988. Optimum expression for computation of the gravity field of a homogeneous polyhedral body. Geophys. Prospect., 36, 733–751.

    Article  Google Scholar 

  • Reguzzoni M., Sampietro D. and Sansò F., 2005. Global Moho from the combination of the CRUST2.0 model and GOCE data. Geophys. J. Int., 195, 222–237, DOI: 10.1093/gji/ggt247.

    Article  Google Scholar 

  • Reigber C., Schwintzer P. and Lühr H., 1999. The CHAMP geopotential mission. Boll. Geof. Teor. Appl., 40, 285–289.

    Google Scholar 

  • Sampietro D., Capponi M., Triglione D., Mansi A.H., Marchetti P. and Sansò F., 2016. GTE: a new software for gravitational terrain effect computation: theory and performances. Pure Appl. Geophys., 173, 2435–2453, DOI: 10.1007/s00024-016-1265-4.

    Article  Google Scholar 

  • Sampietro D., Sona G. and Venuti G., 2007. Residual terrain correction on the sphere by an FFT Algorithm. Proceedings of the 1st International Symposium of the International Gravity Field Service “Gravity Field of the Earth”. Harita Dergisi, Special Issue 18, General Command of Mapping, Istanbul, Turkey, 306-311.

    Google Scholar 

  • Sampietro D., Capponi M., Mansi A.H., Gatti A., Marchetti P. and Sansò F., 2017. Space-wise approach for airborne gravity data modelling. J. Geodesy, 91, 535–545.

    Article  Google Scholar 

  • Sansò F.and Sideris M.G., 2013. Geoid Determination: Theory and Methods. Lecture Notes in Earth System Sciences, 110. Springer-Verlag, Heidelberg, Germany.

    Google Scholar 

  • Sideris M.G., 1984. Computation of Gravimetric Terrain Corrections Using Fast Fourier Transform Techniques. PhD Thesis. University of Calgary, Calgary, Canada.

    Google Scholar 

  • Talwani M. and Ewing M., 1960. Rapid computation of gravitational attraction of three-dimensional bodies of arbitrary shape. Geophysics, 25, 203–225, DOI: 10.1190/1.1438687.

    Article  Google Scholar 

  • Tsoulis D.V., 1998. A combination method for computing terrain corrections. Phys. Chem. Earth, 23, 53–58, DOI: 10.1016/S0079-1946(97)00241-3.

    Article  Google Scholar 

  • Tsoulis D., 2003. Terrain modeling in forward gravimetric problems: A case study on local terrain effects. J. Appl. Geophys., 54, 145–160.

    Article  Google Scholar 

  • Tsoulis D., Novák P. and Kadlec M., 2009. Evaluation of precise terrain effects using highresolution digital elevation models. J. Geophys. Res.-Solid Earth, 114, B02404, DOI: 10.1029/2008JB005639.

    Article  Google Scholar 

  • Tziavos I.N., Sideris M.G., Forsberg R. and Schwarz K.P., 1988. The effect of the terrain on airborne gravity and gradiometry. J. Geophys. Res., 93(B8), 9173–9186.

    Article  Google Scholar 

  • Uieda L., Barbosa V.C. and Braitenberg C., 2015. Tesseroids: forward-modeling gravitational fields in spherical coordinates. Geophysics, 81, F41–F48, DOI: 10.1190/geo2015-0204.1.

    Article  Google Scholar 

  • Vajda P., Vaníček P., Novák P. and Meurers B., 2004. On evaluation of Newton integrals in geodetic coordinates: Exact formulation and spherical approximation. Contrib. Geophys. Geodesy, 34, 289–314.

    Google Scholar 

  • Werner R.A., 2017. The solid angle hidden in polyhedron gravitation formulations. J. Geodesy, 91, 307–328.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina Capponi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Capponi, M., Mansi, A.H. & Sampietro, D. Improving the computation of the gravitational terrain effect close to ground stations in the GTE software. Stud Geophys Geod 62, 206–222 (2018). https://doi.org/10.1007/s11200-017-0814-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-017-0814-3

Keywords

Navigation