Skip to main content

Advertisement

Log in

Magnetic studies at Starunia paleontological and hydrocarbon bearing site (Carpathians, Ukraine)

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

The Starunia oil-ozokerite deposit occurs in the Boryslav-Pokuttya Unit of the Carpathian Foredeep, which is the main oil- and gas-bearing part of the Ukrainian Carpathians. Starunia is of great interest in studying the relationship between the magnetic properties of rocks, soils and hydrocarbons due to extensive surface microseeps yielding oil and gas, mineral water, and clay pulp containing hydrocarbons. We identified a local negative magnetic anomaly (30–35 nT) with a width of about 700 m within the MAG1 profile. The magnetic high is associated with the area of the largest mud volcanoes in the Starunia structure. Magnetic susceptibility of the soil was measured on a site with three distinct landscape features: a patch of forest with phaeozem and mass-specific susceptibility (χ) of 20–45 × 10−8 m3/kg for the surface topsoil; an area near the volcano and Nadia-1 well with visible hydrocarbon microseepage at the surface and the topsoil showing no visible evidence of hydrocarbon presence with χ = 20–50 × 10−8 m3/kg; and a patch of lowland with gleysols and χ = 10–20 × 10−8 m3/kg. Hydrocarbon-containing clays and soils from the alluvial sediments of the Velyky Lukavets River and bedrock clays near the Nadia-1 well demonstrated high χ values (up to 250–440 × 10−8 m3/kg).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aïfa T., Ali Zerrouki A., Baddari K. and Géraud Y., 2014. Magnetic susceptibility and its relation with fractures and petrophysical parameters in the tight sand oil reservoir of Hamra quartzites, southwest of the Hassi Messaoud oil field, Algeria. J. Pet. Sci. Eng., 123, 120–137.

    Article  Google Scholar 

  • Aldana M., Costanzo-Alvarez V., Vitiello D., Colmenares L. and Gómez G., 1999. Framboidal magnetic minerals and their possible association to hydrocarbons: La Victoria oil field, southwestern Venezuela. Geofis. Int., 38, 137–152.

    Google Scholar 

  • Aldana M., Costanzo-Álvarez V., Góme, L., González C., Díaz M., Silva P. and Rada M., 2011. Identification of magnetic minerals related to hydrocarbon authigenesis in venezuelan oil fields using an alternative decomposition of isothermal remanence curves. Stud. Geophys. Geod., 55, 343–358.

    Article  Google Scholar 

  • Almeida-Filho R., Miranda F.P., Galvao L.S. and Freitas C., 2002. Terrain characteristics of a tonal anomaly remotely detected in an area of hydrocarbon microseepage, Tucano Basin, northeastern Brazil. Int. J. Remote Sens., 23, 3893–3898.

    Article  Google Scholar 

  • Brothers L.A., Engel M.H. and Elmore R.D., 1996. The late diagenetic conversion of pyrite to magnetite by organically complexed ferric iron. Chem. Geol., 130, 1–14.

    Article  Google Scholar 

  • Costanzo-Álvarez V., Aldana M., Bayona G., López-Rodríguez D. and Blanco J.M., 2012. Rock magnetic characterization of early and late diagenesis in a stratigraphic well from the Llanos foreland basin (Eastern Colombia). Geol. Soc. London Spec. Publ., 371, 199–216.

    Article  Google Scholar 

  • Cui Z., Liu Q.and Etsell T.H., 2002. Magnetic properties of ilmenite, hematite and oilsand minerals after roasting. Miner. Eng., 15, 1121–1129.

    Article  Google Scholar 

  • Díaz M., Aldana M., Costanzo-Alvarez V., Silva P. and Pérez A., 2000. EPR and magnetic susceptibility studies in well samples from some Venezuelan oil fields. Phys. Chem. Earth A, 25, 447–453.

    Article  Google Scholar 

  • Dzieniewicz M., Sechman H. and Kotarba M.J., 2009. Molecular and isotopic composition of gases adsorbed to near surface sediments at Starunia palaeontological site and vicinity (Carpathian region, Ukraine). Ann. Soc. Geol. Pol., 79, 421–437.

    Google Scholar 

  • Elie M., Techer I., Trotignon L., Khoury H., Salameh E., Vandamme D., Boulvais P. and Fourcade S., 2007. Cementation of kerogen-rich marls by alkaline fluids released during weathering of thermally metamorphosed marly sediments. Part II: Organic matter evolution, magnetic susceptibility and metals (Ti, Cr, Fe) at the Khushaym Matruk natural analogue (Central Jordan). Appl. Geochem., 22, 1311–1328.

    Article  Google Scholar 

  • Elmore R.D., Engel M.H., Crawford L., Nick K., Imbus S. and Sofer Z., 1987. Evidence for a relationship between hydrocarbons and authigenic magnetite. Nature, 325, 428–430.

    Article  Google Scholar 

  • Font E., Trindade R.I.F. and Nédélec A., 2006. Remagnetization in bituminous limestones of the Neoproterozoic Araras Group (Amazon craton): Hydrocarbon maturation, burial diagenesis, or both? J. Geophys. Res., 111, B06204.

    Article  Google Scholar 

  • Gadirov V.G. and Eppelbaum L.V., 2012. Detailed garvity, magnetic successful in exploring Azerbaijan onshore areas. Oil Gas J., 5, 60–73

    Google Scholar 

  • Ivakhnenko O.P. and Potter D.K., 2004. Magnetic susceptibility of petroleum reservoir fluids. Phys. Chem. Earth, 29, 899–907.

    Article  Google Scholar 

  • Jordanova D. and Jordanova N., 2016. Thermomagnetic behavior of magnetic susceptibility-heating rate and sample size effects. Front. Earth Sci., 3, DOI: 10.3389/feart.2015.00090.

    Google Scholar 

  • Klueglein N., Sekann-Behrens T., Obst M., Behrens S., Appel E. and Kappler A., 2013. Magnetite formation by the novel Fe(III)-reducing Geothrix Fermentans strain HradG1 isolated from a hydrocarbon-contaminated sediment with increased magnetic susceptibility. Geomicrobiol. J., 30, 863–873.

    Article  Google Scholar 

  • Kotarba M.J. (Ed.), 2005. Polish and Ukrainian Geological Studies (2004–2005) at Starunia- the Area of Discoveries of Woolly Rhinoceroses. Polish Geological Institute and Society of Research on Environmental Changes “Geosphere”, Warsaw-Cracow, Poland, 218 pp.

    Google Scholar 

  • Kotarba M.J., 2009. Interdisciplinary studies at Starunia palaeontological site and vicinity (Carpathian region, Ukraine) in the years 2006–2009: previous discoveries and research, purposes, results and perspectives. Ann. Soc. Geol. Pol., 79, 219–241.

    Google Scholar 

  • Kotarba M.J. and Koltun Y.V., 2006. The origin and habitat of hydrocarbons of the Polish and Ukrainian parts of the Carpathian Province. In: Golonka J. and Picha F.J. (Eds), The Carpathians and their Foreland Geology and Hydrocarbon Resources. AAPG Memoir, 84, 395–442.

    Chapter  Google Scholar 

  • Kotarba M.J., Sechman H. and Dzieniewicz M., 2009. Distribution and origin of gaseous hydrocarbons and carbon dioxide in the Quaternary sediments at Starunia palaeontological site and vicinity (Carpathian region, Ukraine). Ann. Soc. Geol. Pol., 79, 403–419.

    Google Scholar 

  • Kuderavets R.S., Maksymchuk V.Yu. and Horodys'kyy Yu.M., 2009. Geomagnetic models of hydrocarbon deposits and perspective structures of central part of Dnipro-Donets depression. Scientific Bulletin of Ivan-Frankivsk National Technical University of Oil and Gas, 1(19), 73–81 (in Ukrainian).

    Google Scholar 

  • LeSchack L.A. and Van Alstin D.R., 2002. High-resolution ground-magnetic (HRGM) and radiometric surveys for hydrocarbon exploration: six case histories in Western Canada. In: Schumacher D. and LeSchack L.A. (Eds), Surface Exploration Case Histories: Applications of Geochemistry, Magnetics and Remote Sensing. AAPG Studies in Geology, 48, 67–156.

    Google Scholar 

  • Liu Q., Cui Z. and Etsell T.H., 2006. Characterization of Athabasca oil sands froth treatment tailings for heavy mineral recovery. Fuel, 85, 807–814.

    Article  Google Scholar 

  • Machel H.G., 1995. Magnetic mineral assemblages and magnetic contrasts in diagenetic environments- with implications for studies of palaeomagnetism, hydrocarbon migration and exploration. Geol. Soc. Lodon Spec. Publ., 98, 9–27.

    Article  Google Scholar 

  • Maksymchuk V., Kuderavets R., Chobotok I. and Tymoschuk V., 2013. Peculiarities of anomalous magnetic field related to oil-gas deposits in NW part of the Carpathian Foredeep. Extended Abstract. 3rd EAGE International Geoscience Conference Tyumen 2013- New Geotechnology for the Old Oil Provinces. EAGE Publications, EAGE, Houten, The Netherlands, DOI: 10.3997/2214-4609.20142704.

    Google Scholar 

  • Mathé V. and Lévêque F., 2005. Trace magnetic minerals to detect redox boundaries and drainage effects in a marshland soil in western France. Eur. J. Soil Sci., 56, 737–751.

    Google Scholar 

  • McCabe C., Sassen R. and Saffer B., 1987. Occurrence of secondary magnetite within biodegraded oil. Geology, 15, 7–10.

    Article  Google Scholar 

  • Mefteh S., Essefi E., Yaich C., Jamoussi F. and Medhioub M., 2015. Correlation between magnetic susceptibility and mineral species along NWA-1 well, southern Tunisia: An overlap of the depositional environment, the climate, and the diagenesis. J. Afr. Earth Sci., 103, 89–101.

    Article  Google Scholar 

  • Menshov O. and Sukhorada A., 2010. Magnetic properties of Ukraine soils and their informational content. Extended Abstract. 72nd EAGE Conference and Exhibition incorporating SPE EUROPEC 2010. EAGE Publications, EAGE, Houten, The Netherlands, DOI: 10.3997/2214-4609.201401269.

    Google Scholar 

  • Menshov O., Kuderavets R., Vyzhva S., Chobotok I. and Pastushenko T., 2015. Magnetic mapping and soil magnetometry of hydrocarbon prospective areas in western Ukraine. Stud. Geophys. Geod., 59, 614–627.

    Article  Google Scholar 

  • Nikitskiy V. and Glebovskoy Y., 1990. Magnetic Survey: Geophysics Directory. Nedra, Moscow, Russia, 470 pp. (in Russian).

    Google Scholar 

  • Porsch K., Rijal M., Borch T., Troyer L., Behrens S., Wehland F., Appel E. and Kappler A., 2014. Impact of organic carbon and iron bioavailability on the magnetic susceptibility of soils. Geochem. Cosmochim. Acta, 128, 44–57.

    Article  Google Scholar 

  • Rijal M., Porsch K., Appel E. and Kappler A., 2012. Magnetic signature of hydrocarboncontaminated soils and sediments at the former oil field Hänigsen, Germany. Stud. Geophys. Geod., 56, 889–908.

    Article  Google Scholar 

  • Sechman H., Kotarba M.J. and Dzieniewicz M., 2009. Surface geochemical survey at Starunia palaeontological site and vicinity (Carpathian region, Ukraine). Ann. Soc. Geol. Pol., 79, 375–390.

    Google Scholar 

  • Schumacher D., 1996. Hydrocarbon-induced alteration of soils and sediments. In: Schumacher D. and Abrams M.A. (Eds), Hydrocarbon Migration and its Near-Surface Expression. AAPG Memoir, 66, 71–89.

    Google Scholar 

  • Slaczka A., Kruglov S., Golonka J., Oszczypko N. and Popadyuk I., 2006. Geology and hydrocarbon resources of the Outer Carpathians, Poland, Slovakia and Ukraine: General geology. In: In: Golonka J. and Picha F.J. (Eds), The Carpathians and their Foreland Geology and Hydrocarbon Resources. AAPG Memoir, 84, 221–258.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleksandr Menshov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menshov, O., Kuderavets, R., Vyzhva, S. et al. Magnetic studies at Starunia paleontological and hydrocarbon bearing site (Carpathians, Ukraine). Stud Geophys Geod 60, 731–746 (2016). https://doi.org/10.1007/s11200-016-0621-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-016-0621-2

Keywords

Navigation