Skip to main content
Log in

Kinematics of landslide estimated by repeated GPS measurements in the Avcilar region of Istanbul, Turkey

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

The aim of this study is to analyze the spatial and temporal behavior of the landslide located in Avcilar region which is situated between Kucukcekmece and Buyukcekmece Lakes in the north-west of Marmara region, Turkey. A network consisting of 10 sites has been surveyed four times from November 2007 to May 2009 using Global Positioning System (GPS). The deformation analysis has been applied to determine the landslide movement parameters of the sites using GPS measurements of the four epochs. The reliable and high precision deformation rates are presented in terms of displacement vectors, velocity vectors and changes of accumulated strain. Landslides of the region are characterized from a regional GPS network. Each site has statistically different temporal behavior and significant relative motions and the region has irregular landslide movements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akarvardar S., Feigl K.L. and Ergintav S., 2009. Ground deformation in an area later damaged by an earthquake: monitoring the Avcilar district of Istanbul, Turkey, by satellite radar interferometry 1992–1999. Geophys. J. Int., 178, 976–988.

    Article  Google Scholar 

  • Brunner F.K., 1979. On the analysis of geodetic network for the determination of the incremental strain tensor. Sur. Rev., 25, 56–67.

    Google Scholar 

  • Caspary W.F. and Rüeger J.M., 1987. Concepts of Network Analyses. Kensington, School of Surveying, University of New South Wales, Australia, ISBN: 0858390442.

    Google Scholar 

  • Dach R., Hugentabler U., Fridez P. and Meindl M., 2007. Bernese GPS Software Version 5.0. Stämpfli Publications AG, Bern, Switzerland.

    Google Scholar 

  • Duman T.Y., Can T., Ulusoy R., Kecer M., Emre O., Ates S. and Gedik I., 2005. A geohazard reconnaissance study based on geosceintific information for development needs of the western region of Istanbul (Turkey). Environ. Geol., 48, 871–888.

    Article  Google Scholar 

  • Duman T.Y., Can T., Gokceoglu C., Nefeslioglu H.A. and Sonmez H., 2006. Application of logistic regression for landslide susceptibility zoning of Cekmece Area, Istanbul, Turkey. Environ. Geol., 51, 241–256.

    Article  Google Scholar 

  • Ergintav S., Burgmann R., McClusky S., Cakmak R., Reilinger R.E., Lenk O., Barka A. and Gurkan O., 2002. Postseismic deformation near the Izmit earthquake 17 August 1999. Bull. Seismol. Soc. Amer., 92, 194–207.

    Article  Google Scholar 

  • Ergintav S., Doğan U., Gerstenecker C., Cakmak R., Belgen A., Demirel H., Aydın C. and Reilinger R., 2007. A snapshot (2003–2005) of the 3D postseismic deformation for the 1999, Mw = 7.4 Izmit earthquake in the Marmara Region, Turkey, by first results of joint gravity and GPS monitoring. J. Geodyn., 44, 1–18.

    Article  Google Scholar 

  • Ergintav S., McClusky S., Hearn E., Reilinger R., Çakmak R., Herring T., Özener H., Lenk O. and Tari E., 2009. Seven years of postseismic deformation following the 1999, M = 7.4 and M = 7.2, Izmit-Düzce, Turkey earthquake sequence. J. Geophys. Res., 144, B07403, DOI: 10.1029/2008JB006021.

    Article  Google Scholar 

  • Ergintav S., Demirbag E., Ediger V., Saatcilar R., Inan S., Cankurtaranlar A., Dikbas A. and Bas M., 2011. Structural framework of onshore and offshore Avcılar, Istanbul under the influence of the North Anatolian Fault. Geophys. J. Int., 185, 93–105.

    Article  Google Scholar 

  • Genrich J.F. and Bock Y., 1992. Rapid resolution of crustal motion at short ranges with Global Positioning System. J. Geophys. Res., 96, 3261–3269.

    Article  Google Scholar 

  • Malet J.P., Maquaire O. and Calais E., 2002. The use of Global Positioning System techniques for the continuous monitoring of landslides: application to the Super-Sauze earthflow (Alpes-de-Haute-Provence, France). Geomorphology, 43, 33–54.

    Article  Google Scholar 

  • Neumann I. and Kutterer H., 2006. Congruence tests and outlier detection in deformation analysis with respect to observation imprecision. 3rd IAG/12th FIG Symposium, Baden, Germany, May 22–24, 2006 (http://www.fig.net/commission6/baden_2006/PDF/MOD2/Neumann.pdf).

  • Niemeier W., 1985. Deformations analyse. In: Pelzer H. (Ed.), Geodaetische Netze in Landes-und Ingenieurvermessung II. Vermessungswesen bei Konrad Wittwer, 13. Wittwer, Stuttgart, Germany, 559–623 (in German).

    Google Scholar 

  • Nocquet J.M. and Calais E., 2003. Crustal velocity field of western Europe from permanent GPS array solutions, 1996–2001. Geophys. J. Int., 154, 72–88.

    Article  Google Scholar 

  • Pareek N., Sharma M.L. and Arora M.K., 2010. Impact of seismic factors on landslide susceptibility zonation: a case study in part of Indian Himalayas. Landslides, 7, 191–201.

    Article  Google Scholar 

  • Prescott W.H., 1976, An extension of Frank’s Method for obtaining crustal shear strains from survey data. Bull. Seismol. Soc. Amer., 66, 1847–1853.

    Google Scholar 

  • Saastamoinen J., 1972. Introduction to practical computation of astronomical refraction. Bulletin Géodésique, 106, 383–397.

    Article  Google Scholar 

  • Şen Ş., 2007. A fault zone cause of large amplification and damage in Avcılar (west of Istanbul) during 1999 Izmit earthquake. Nat. Hazards, 43, 351–363.

    Article  Google Scholar 

  • Şengör A.M.C., Tüysüz O., İmren C., Sakınç M., Eyidoğan H., Görür N., Le Pichon X. and Rangin C., 2004. The North Anatolian fault: A new look. Ann. Rev. Earth Planet. Sci., 33, 1–75.

    Google Scholar 

  • Teza G., Pesci A., Genevois R. and Galgaro A., 2008. Characterization of landslide ground surface kinematics from terrestrial laser scanning and strain field computation. Geomorphology, 97, 424–437.

    Article  Google Scholar 

  • Tzenkov T. and Gospodinov S., 2003. Geometric analysis of geodetic data for investigation of 3D landslide deformations. Nat. Hazards Rev., 4, 78–81.

    Article  Google Scholar 

  • Varnes D.J., 1978. Slope movement types and processes. In: Schuster R.L. and Krizek R.E. (Eds.), Landslide Analysis and Control. Sp. Rep. 176, Transportation Research Board, National Academy of Sciences, Washington DC, 11–33.

    Google Scholar 

  • Wessel P. and Smith W.H.F., 1991. Free software helps map and display data. Eos Trans. AGU, 72,441, 445–446.

    Google Scholar 

  • Yalçınkaya M. and Bayrak T., 2005. Comparison of static, kinematic and dynamic geodetic deformation models for Kutlugun landslide in Northeastern Turkey. Nat. Hazards, 34, 91–110.

    Article  Google Scholar 

  • Zakarevicius A., Sliaupa S., Parseliunas E. and Stanionis A., 2008. Geodetic network deformation based on GPS data in the Baltic Region. Geodesy and Cartography, 34, 122–126.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ugur Dogan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dogan, U., Oz, D. & Ergintav, S. Kinematics of landslide estimated by repeated GPS measurements in the Avcilar region of Istanbul, Turkey. Stud Geophys Geod 57, 217–232 (2013). https://doi.org/10.1007/s11200-012-1147-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-012-1147-x

Keywords

Navigation