Skip to main content
Log in

A combined rock magnetic and geochemical investigation of Upper Cretaceous volcanic rocks in the Pontides, Turkey

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

An Erratum to this article was published on 01 July 2010

Abstract

Upper Cretaceous volcanic rocks were collected at 24 sites along the Pontides, N-NE Turkey, for rock magnetic and geochemical studies. Rock magnetic and petrographic methods showed that the lavas are characterized predominantly by titanomagnetites with a mixture of pseudo-single and multi-domain grains, whereas in tephrite single domain titanohematite was dominant. Measurements of magnetic susceptibility and the geochemical properties on different volcanic rock types provide important knowledge about the magnetic stability of the rocks. The magnetic properties are interpreted in terms of the composition, concentration, magma generation. Tephrite and phonotephrites with the highest intensities (5200 mA/m) and high magnetic susceptibility values (2585 × 10−5), largest grain sizes and Fe/Ti values, showing minor or no alteration are the most magnetic stable samples in contrast to dacites with the lowest intensity-magnetic susceptibility (520 mA/m − 573 × 10−5) and high alteration degree. The basanite samples show very low NRM (48–165 mA/m) but very high magnetic susceptibility (2906–3100 × 10−5) values suggesting the alteration of Fe-Ti minerals. It is shown that the magnetic properties of the basic to acidic rocks show a systematic variation with magma differentiation and could be related to fractional crystallization. Major and trace elements revealed that the lavas are compatible with complex magma evolution, with mineral phases of olivine+magnetite+clinopyroxene in basic series, amphibole+ +clinopyroxene in intermediate rocks and plagioclase+clinopyroxene+biotite in acidic series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamia Sh.A., Buadze V.I. and Shavishvili I.D., 1977. The Great Caucasus in the Phanerozoic; A geodynamic model. In: Jankovic S. (Ed.), Metallogeny and Plate Tectonics in the Northeastern Mediterranean. IGCP-UNESCO, Correlation Program, Vol. 3, Faculty of Mining and Geology, Belgrade, 215–229.

  • Alva-Valdivia L.M, Urrutia-Fucugauchi J., Bohnel H. and Moran-Zenteno D.J., 1991. Aeromagnetic anomalies and paleomagnetism in Jalisco and Michoacan, southern Mexico continental margin, and their implications for iron-ore deposits exploration. Tectonophysics, 192, 169–190.

    Article  Google Scholar 

  • Alva-Valdivia L.M., Urrutia-Fucugauchi J., Goguichaichvili A., and Dunlop D., 2000. Magnetic mineralogy and properties of the Peña Colorada iron ore deposit, Guerrero Terrane: implications for magnetometric modeling. J. South Am. Earth Sci., 13, 415–428.

    Article  Google Scholar 

  • Alva-Valdivia L.M.., Rivas M.L., Goguitchaichvili A., Urrutia-Fucugauchi J., Gonzalez J.A., Morales J., Gómez S., Henríquez F., Nyström J.O. and Naslund R.H., 2003. Rock-magnetic and oxide microscopic studies of the El Laco iron ore deposits, Chilean Andes, and implications for magnetic anomaly modeling. Int. Geol. Rev., 45, 533–547.

    Article  Google Scholar 

  • Banerjee S.K., 1992. Applied rock magnetism in the 1990s: potential breakthrough in a new userdriven science. EOS, 73, 142–143

    Article  Google Scholar 

  • Bektas O., 1986. Paleostress trajectories and polyphase rifting in the arc, back-arc of the eastern Pontides. Bulletin of Mineral Research and Exploration Institute of Turkey, Ankara, 103–104, 1–15.

    Google Scholar 

  • Cox K.G., Bell J.D. and Pankhurst R.J., 1979. The Interpretation of Igneous Rocks. Allen & Unwin, London.

    Google Scholar 

  • Bleil U. and Petersen N., 1983. Variations in magnetization intensity and low-temperature titanomagnetic oxidation of ocean floor basalts. Nature, 301, 384–388.

    Article  Google Scholar 

  • Day R., Fuller M. and Smith V.A., 1977. Hysteresis Properties of Titanomagnetites, Grain Size and Composition Dependence. Phys. Earth Planet. Inter., 13, 260–267.

    Article  Google Scholar 

  • Dewey J.F., Pitman III W.C., Ryan W.B.F. and Bonnin J., 1973. Plate tectonics and the evolution of the Alpine system. Bull. Geol. Soc. Amer., 84, 3137–3180.

    Article  Google Scholar 

  • Dunlop D., 1981. The rock magnetism of fine particles. Phys. Earth Planet. Inter., 26, 1–26.

    Article  Google Scholar 

  • Hildreth W. and Moorbath S., 1988. Crustal contributions to arc magma genesis in the Andes of Central Chile. Contrib. Mineral. Petrol., 98, 455–489.

    Article  Google Scholar 

  • Horen H. and Fleutelot C., 1998. Highly magnetised and differentiated basalts at the 18–19° S propagating spreading centre in the North Fiji Basin. Mar. Geophys. Res., 20,129–137.

    Article  Google Scholar 

  • Jackson M.J., Moskowitz B.M., Rosenbaum J. and Kissel C., 1998. Field-dependence of ac susceptibility in titanomagnetites. Earth Planet. Sci. Lett., 157, 129–139.

    Article  Google Scholar 

  • Kent D.V. and Gee J., 1994. Grain size-dependent alteration and the magnetization of ocean basalts, Science, 265, 1561–1563.

    Article  Google Scholar 

  • Lowrie W. and Fuller M., 1971. On the alternating field demagnetization characteristics of multidomain thermoremanent magnetization in magnetite. J. Geophys. Res., 76, 6339–6349.

    Article  Google Scholar 

  • Muxworthy A.R. and Heider F., 2001. Rock magnetic investigation of historical lavas used in palaeointensity studies. Stud. Geophys. Geod., 45, 283–296.

    Article  Google Scholar 

  • Pearce J.A., 1983. Role of sub-continental lithosphere in magma genesis at active continental margins: In: Hawkesworth C.J. and Norry M.J. (Eds.), Continental Basalts and Mantle Xenoliths. Shiva Geology Series, Nantwich, U.K., 230–249.

    Google Scholar 

  • Robertson A.H.F., Eaton S., Follows E.J. and McCallum J.E., 1991. The role of local tectonics versus global sea-level changes in the Neogene evolution of the Cyprus active margin. In: Macdonald D.I.M. (Ed.), Sedimentation, Tectonics and Eustasy. International Association of Sedimentology, Amsterdam, 331–369.

    Chapter  Google Scholar 

  • Şengör A.M.C. and Yılmaz Y., 1981. Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics, 75, 181–241.

    Article  Google Scholar 

  • Takahashi M., Aramaki S. and Ishihara S., 1980. Magnetite series/ilmenite series vs. I-type/S-type granitoids. In: Ishihara I. and Takenouchi S. (Eds.), Granitic Magmatism and Related Mineralization. Mining Geology. Nihon Shigen Chishitsu Gakkai — Society of Resource Geologists of Japan, Tokyo, 13–28.

    Google Scholar 

  • Tarling D.H. and Hrouda F., 1993. The Magnetic Anisotropy of Rocks. Chapman & Hall, London.

    Google Scholar 

  • Ubangoh R.U., Pacca I.G., Nyobe J.B., Hell J. and Ateba B., 2005. Petromagnetic characteristics of Cameroon Line volcanic rocks. J. Volcanol. Geotherm. Res., 142, 225–241.

    Article  Google Scholar 

  • Wang D. and Van der Voo R., 2004. The hysteresis properties of multidomain magnetite and titanomagnetite/titanomaghemite in mid-ocean ridge basalts. Earth Planet. Sci. Lett., 220, 175–184.

    Article  Google Scholar 

  • Zhou W., Van der Voo R., Peacor D.R., Wang D. and Zhang Y., 2001. Low-temperature oxidation in MORB of titanomagnetite to titanomaghemite: A gradual process with implications for marine magnetic anomaly amplitudes. J. Geophys., 106, 6409–6421.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mualla Cengiz Cinku.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s11200-010-0031-9.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cinku, M.C., Rammlmair, D., Hisarli, M.Z. et al. A combined rock magnetic and geochemical investigation of Upper Cretaceous volcanic rocks in the Pontides, Turkey. Stud Geophys Geod 53, 475–494 (2009). https://doi.org/10.1007/s11200-009-0035-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-009-0035-5

Key words

Navigation