Skip to main content
Log in

Identification of topic evolution: network analytics with piecewise linear representation and word embedding

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Understanding the evolutionary relationships among scientific topics and learning the evolutionary process of innovations is a crucial issue for strategic decision makers in governments, firms and funding agencies when they carry out forward-looking research activities. However, traditional co-word network analysis on topic identification cannot effectively excavate semantic relationship from the context, and fixed time window method cannot scientifically reflect the evolution process of topics. This study proposes a framework of identifying topic evolutionary pathways based on network analytics: Firstly, keyword networks are constructed, in which a piecewise linear representation method is used for dividing time periods and a Word2Vec mode is used for capturing semantics from the context of titles and abstracts; Secondly, a community detection algorithm is used to identify topics in networks; Finally, evolutionary relationships between topics are represented by measuring the topic similarity between adjacent time periods, and then topic evolutionary pathways are identified and visualized. An empirical study on information science demonstrates the reliability of the methodology, with subsequent empirical validations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. https://github.com/apache/echarts.

  2. JASIST changed its name from Journal of the American Society for Information Science and Technology to Journal of the Association for Information Science and Technology in 2014.

  3. VantagePoint is a text mining visualization software for bibliometric data (such as scientific paper patents and academic project applications). Please visit the website for detail: www.thevantagepoint.com.

  4. https://mrvar.fdv.uni-lj.si/pajek/.

  5. https://www.vosviewer.com/.

  6. https://github.com/apache/echarts.

References

  • Arruda, H. F., Costa, L. D. F., & Amancio, D. R. (2016). Topic segmentation via community detection in complex networks. Chaos: An Interdisciplinary Journal of Nonlinear Science, 26(6), 063120.

    Article  MathSciNet  MATH  Google Scholar 

  • Balili, C., Lee, U., Segev, A., Kim, J., & Ko, M. (2020). TermBall: tracking and predicting evolution types of research topics by using knowledge structures in scholarly big data. IEEE Access, 8, 108514–108529.

    Article  Google Scholar 

  • Blei, D. M., & Lafferty, J. D. (2006). Dynamic topic models. In Proceedings of the 23rd ACM international conference on machine learning (pp. 113–120).

  • Blondel, V. D., Guillaume, J. L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 30(2), 155–168.

    MATH  Google Scholar 

  • Börner, K., Chen, C., & Boyack, K. W. (2003). Visualizing knowledge domains. Annual Review of Information Science and Technology, 37(1), 179–255.

    Article  Google Scholar 

  • Branting, L. K. (2012). Context-sensitive detection of local community structure. Social Network Analysis and Mining, 2(3), 279–289.

    Article  Google Scholar 

  • Carmona-Poyato, Á., Fernández-Garcia, N. L., Madrid-Cuevas, F. J., & Durán-Rosal, A. M. (2021). A new approach for optimal offline time-series segmentation with error bound guarantee. Pattern Recognition, 115, 107917.

    Article  Google Scholar 

  • Chae, C., Yim, J. H., Lee, J., Jo, S. J., & Oh, J. R. (2020). The bibliometric keywords network analysis of human resource management research trends: the case of human resource management journals in South Korea. Sustainability, 12(14), 5700.

    Article  Google Scholar 

  • Chang, P. C., Fan, C. Y., & Liu, C. H. (2009). Integrating a piecewise linear representation method and a neural network model for stock trading points prediction. IEEE Transactions on Systems, Man, and Cybernetics Part c: Applications and Reviews, 39(1), 80–92.

    Article  Google Scholar 

  • Chen, B., Tsutsui, S., Ding, Y., & Ma, F. C. (2017a). Understanding the topic evolution in a scientific domain: An exploratory study for the field of information retrieval. Journal of Informetrics, 11(4), 1175–1189.

    Article  Google Scholar 

  • Chen, H., Zhang, G., Zhu, D., & Lu, J. (2015). A patent time series processing component for technology intelligence by trend identification functionality. Neural Computing and Applications, 26(2), 345–353.

    Article  Google Scholar 

  • Chen, H., Zhang, G., Zhu, D., & Lu, J. (2017b). Topic-based technological forecasting based on patent data: A case study of Australian patents from 2000 to 2014. Technological Forecasting and Social Change, 119, 39–52.

    Article  Google Scholar 

  • Chen, J., Chen, J., Zhao, S., Zhang, Y., & Tang, J. (2020). Exploiting word embedding for heterogeneous topic model towards patent recommendation. Scientometrics, 125(3), 2091–2108.

    Article  Google Scholar 

  • Chen, X., Chen, J., Wu, D., Xie, Y., & Li, J. (2016). Mapping the research trends by co-word analysis based on keywords from funded project. Procedia Computer Science, 91, 547–555.

    Article  Google Scholar 

  • Cheng, Q., Wang, J., Lu, W., Huang, Y., & Bu, Y. (2020). Keyword-citation-keyword network: A new perspective of discipline knowledge structure analysis. Scientometrics, 124(3), 1923–1943.

    Article  Google Scholar 

  • Cruz, P., & Cruz, H. (2020). Piecewise linear representation of finance time series: Quantum mechanical tool. Acta Physica Polonica A., 138(1), 21–24.

    Article  Google Scholar 

  • Ding, W., & Chen, C. (2014). Dynamic topic detection and tracking: A comparison of HDP, C-word, and cocitation methods. Journal of the Association for Information Science and Technology, 65(10), 2084–2097.

    Article  Google Scholar 

  • Ding, Y. (2011). Community detection: Topological vs. topical. Journal of Informetrics, 5(4), 498–514.

    Article  Google Scholar 

  • Ding, Y., & Stirling, K. (2016). Data-driven discovery: A new era of exploiting the literature and data. Journal of Data and Information Science, 1(4), 1–9.

    Article  Google Scholar 

  • Ding, Z., Liu, R., Li, Z., & Fan, C. (2020). A thematic network-based methodology for the research trend identification in building energy management. Energies, 13(18), 4621.

    Article  Google Scholar 

  • Érdi, P., Makovi, K., Somogyvári, Z., Strandburg, K., Tobochnik, J., Volf, P., & Zalányi, L. (2013). Prediction of emerging technologies based on analysis of the US patent citation network. Scientometrics, 95(1), 225–242.

    Article  Google Scholar 

  • Firth, J. R. (1957). A synopsis of linguistic theory 1930–55. Studies in Linguistic Analysis the Philological Society, 1957, 1–32.

    Google Scholar 

  • Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486(3–5), 75–174.

    Article  MathSciNet  Google Scholar 

  • Gémar, G., & Jiménez-Quintero, J. A. (2015). Text mining social media for competitive analysis. Tourism & Management Studies, 11(1), 84–90.

    Google Scholar 

  • Guimera, R., Sales-Pardo, M., & Amaral, L. A. (2007). Classes of complex networks defined by role-to-role connectivity profiles. Nature physics, 3(1), 63–69.

    Article  Google Scholar 

  • Holland, G. A. (2008). Information science: an interdisciplinary effort? Journal of Document, 64(1), 7–23.

    Article  Google Scholar 

  • Hou, J., Yang, X., & Chen, C. (2018). Emerging trends and new developments in information science: A document co-citation analysis (2009–2016). Scientometrics, 115(2), 869–892.

    Article  Google Scholar 

  • Hu, K., Wu, H., Qi, K., Yu, J., Yang, S., et al. (2018b). A domain keyword analysis approach extending Term Frequency-Keyword Active Index with Google Word2Vec model. Scientometrics, 114(3), 1031–1068.

    Article  Google Scholar 

  • Hu, X. (2014). Using social network analysis and text mining to analyze students’ input on social media. Library & Information Science Research, 32(3), 732–741.

    Google Scholar 

  • Huang, G., & Zhou, X. (2016). A piecewise linear representation method of hydrological time series based on curve feature. In 2016 8th international conference on intelligent human-machine systems and cybernetics (IHMSC) (pp. 203–207). IEEE.

  • Huang, L., Chen, X., Ni, X., Liu, J., Cao, X., & Wang, C. (2021). Tracking the dynamics of co-word networks for emerging topic identification. Technological Forecasting and Social Change, 170, 120944.

    Article  Google Scholar 

  • Huang, L., Liu, F., & Zhang, Y. (2020). Overlapping community discovery for identifying key research themes. IEEE transactions on engineering management.

  • Isler, Y., & Kuntalp, M. (2010). Heart rate normalization in the analysis of heart rate variability in congestive heart failure. In Proceedings of the Institution of Mechanical Engineers Part H Journal of Engineering in Medicine, 224(3), 453.

    Article  Google Scholar 

  • Iwata, T., Yamada, T., Sakurai, Y., & Ueda, N. (2010). Online multiscale dynamic topic models. In Proceedings of the 16th ACM Sigkdd international conference on knowledge discovery and data mining (pp. 663–672).

  • Jeong, C., Jang, S., Park, E., & Choi, S. (2020). A context-aware citation recommendation model with BERT and graph convolutional networks. Scientometrics, 124(3), 1907–1922.

    Article  Google Scholar 

  • Jeong, D. H., & Min, S. (2014). Time gap analysis by the topic model-based temporal technique. Journal of Informetrics, 8(3), 776–790.

    Article  Google Scholar 

  • Kai, H., Qi, K., Yang, S., Shen, S., Cheng, X., Huayi, W., Zheng, J., McClure, S., & Tianxing, Y. (2018). Identifying the “Ghost City” of domain topics in a keyword semantic space combining citations. Scientometrics, 114(3), 1141–1157.

    Article  Google Scholar 

  • Katsurai, M., & Ono, S. (2019). TrendNets: Mapping research trends from dynamic co-word networks via sparse representation. Scientometrics, 121, 1583–1598.

    Article  Google Scholar 

  • Keogh, E., Chu, S., Hart, D., & Pazzani, M. (2001). An online algorithm for segmenting time series. In Proceedings 2001 IEEE international conference on data mining (pp. 289–296).

  • Keogh, E., Chu, S., Hart, D., & Pazzani, M. (2004). Segmenting time series: A survey and novel approach. Data Min Time Ser Databases, 57, 1–22.

    Article  Google Scholar 

  • Kimura, A., Kashino, K., Kurozumi, T., & Murase, H. (2008). A quick search method for audio signals based on a piecewise linear representation of feature trajectories. IEEE Transactions on Audio, Speech and Language Processing, 16(2), 396–407.

    Article  Google Scholar 

  • Kiss, A., Temesi, G., Tompa, O., Lakner, Z., & Soós, S. (2021). Structure and trends of international sport nutrition research between 2000 and 2018: Bibliometric mapping of sport nutrition science. Journal of the International Society of Sports Nutrition, 18(1), 12.

    Article  Google Scholar 

  • Klavans, R., & Boyack, K. W. (2017). Which type of citation analysis generates the most accurate taxonomy of scientific and technical knowledge? Journal of the Association for Information Science and Technology, 68(4), 984–998.

    Article  Google Scholar 

  • Kleminski, R., Kazienko, P., & Kajdanowicz, T. (2020). Analysis of direct citation, co-citation and bibliographic coupling in scientific topic identification. Journal of Information Science. https://doi.org/10.1177/0165551520962775

    Article  Google Scholar 

  • Kralj, J., Valmarska, A., Robnik-Šikonja, M., & Lavrač, N. (2015). Mining text enriched heterogeneous citation networks. In Pacific-Asia conference on knowledge discovery and data mining (pp. 672–683). Springer, Cham.

  • Kuhn, T. S. (1962). The structure of scientifific revolutions. University of Chicago Press.

  • Lancichinetti, A., & Fortunato, S. (2009). Community detection algorithms: A comparative analysis. Physical review E, 80(5), 056117.

    Article  Google Scholar 

  • Levy, O., & Goldberg, Y. (2014). Neural word embedding as implicit matrix factorization. In Advances in neural information processing systems (pp. 2177–2185).

  • Li, G.-C., Lai, R., D’Amour, A., Doolin, D. M., Sun, Y., Torvik, V. I., Yu, A. Z., & Fleming, L. (2014). Disambiguation and co-authorship networks of the US patent inventor database (1975–2010). Research Policy, 43(6), 941–955.

    Article  Google Scholar 

  • Liu, Z. (2005). Visualizing the intellectual structure in urban studies: A journal co-citation analysis (1992–2002). Scientometrics, 62(3), 385–402.

    Article  Google Scholar 

  • Luo, L., & Chen, X. (2013). Integrating piecewise linear representation and weighted support vector machine for stock trading signal prediction. Applied Soft Computing Journal, 13(2), 806–816.

    Article  Google Scholar 

  • Mathieu, R. G., & Gibson, J. E. (1993). A methodology for large-scale R&D planning based on cluster analysis. IEEE Transactions on Engineering Management, 40(3), 283–292.

    Article  Google Scholar 

  • McCain, K. W. (2008). Assessing an author’s influence using time series historiographic mapping: The oeuvre of Conrad Hal Waddington (1905–1975). Journal of the American Society for Information Science and Technology, 59(4), 510–525.

    Article  Google Scholar 

  • Mei, Q. Z., & Zhai, C. X. (2005). Discovering evolutionary theme patterns from text: an exploration of temporal text mining. In Proceedings of the 11th ACM Sigkdd international conference on knowledge discovery and data mining (pp. 198–207).

  • Miao, Z., Du, J., Dong, F., Liu, Y., & Wang, X. (2020). Identifying technology evolution pathways using topic variation detection based on patent data: A case study of 3D printing. Futures, 118, 102530.

    Article  Google Scholar 

  • Mikolov, T., Sutskever, I., Chen, K., et al. (2013). Distributed representations of words and phrases and their compositionality. Advances in Neural Information Processing Systems, 26, 3111–3119.

    Google Scholar 

  • Moreno, A., & Terwiesch, C. (2014). Doing business with strangers: Reputation in online service marketplaces. Information Systems Research, 25(4), 865–886.

    Article  Google Scholar 

  • Newman, M. E. J. (2004). Fast algorithm for detecting community structure in networks. Physical review E, 69(6), 066133.

    Article  Google Scholar 

  • Newman, M. E. J. (2012). Communities, modules and large-scale structure in networks. Nature Physics, 8(8), 25–31.

    Article  Google Scholar 

  • Newman, M. E. J., & GIirvan, M. (2004). Finding and evaluating community structure in networks. Physical review, 69(2), 108–113.

    Google Scholar 

  • Nguyen, T. H. D., Melcer, E., Canossa, A., Isbister, K., & Seif El-Nasr, M. (2018). Seagull: A bird’s-eye view of the evolution of technical games research. Entertainment Computing, 26, 88–104.

    Article  Google Scholar 

  • No, H. J., An, Y., & Park, Y. (2015). A structured approach to explore knowledge flows through technology-based business methods by integrating patent citation analysis and text mining. Technological Forecasting & Social Change, 97, 181–192.

    Article  Google Scholar 

  • Onan, A. (2019). Two-Stage Topic Extraction Model for Bibliometric Data Analysis Based on Word Embeddings and Clustering. IEEE Access, 7, 145614–145633.

    Article  Google Scholar 

  • Onan, A., & Toolu, M. A. (2020). Weighted word embeddings and clustering-based identification of question topics in mooc discussion forum posts. Computer Applications in Engineering Education., 29, 675–689.

    Article  Google Scholar 

  • Palla, G., Barabási, A.-L., et al. (2007). Quantifying social group evolution. Nature, 446(7136), 664.

    Article  Google Scholar 

  • Park, I., & Yoon, B. (2018). Technological opportunity discovery for technological convergence based on the prediction of technology knowledge flow in a citation network. Journal of Informetrics, 12(4), 1199–1222.

  • Pépin, L., Kuntz, P., Blanchard, J., Guillet, F., & Suignard, P. (2017). Visual analytics for exploring topic long-term evolution and detecting weak signals in company targeted tweets. Computers & Industrial Engineering, 112, 450–458.

    Article  Google Scholar 

  • Qi, L., Wang, Y., Chen, J., Liao, M., & Zhang, J. (2021). Culture under complex perspective: A classification for traditional Chinese cultural elements based on NLP and complex networks. Complexity, 2021, 1–15.

    Google Scholar 

  • Qian, Y., Liu, Y., & Sheng, Q. Z. (2020). Understanding hierarchical structural evolution in a scientific discipline: A case study of artificial intelligence. Journal of Informetrics, 14(3), 101047.

    Article  Google Scholar 

  • Qiu, J., & Lin, Z. (2011). A framework for exploring organizational structure in dynamic social networks. Decision Support Systems, 51(4), 760–771.

    Article  Google Scholar 

  • Rabitz, F., Olteanu, A., Jurkevičienė, J., & Budžytė, A. (2021). A topic network analysis of the system turn in the environmental sciences. Scientometrics, 126(3), 2107–2140.

    Article  Google Scholar 

  • Rees, B. S., & Gallagher, K. B. (2012). Overlapping community detection using a community optimized graph swarm. Social Network Analysis & Mining, 2(4), 405–417.

    Article  Google Scholar 

  • Ren, H., Renoust, B., Melançon, G., Viaud, M.-L. & Satoh, S. (2018). Exploring temporal communities in mass media archives.

  • Schwartz, R., Reichart, R., & Rappoport, A. (2015). Symmetric pattern based word embeddings for improved word similarity prediction. In Proceedings of the nineteenth conference on computational natural language learning.

  • Sharef, N. M., Martin, T., & Azmimurad, M. A. (2013). Conceptually related lexicon clustering based on word context association mining. International Journal of Information Processing & Management, 4(3), 40–50.

    Article  Google Scholar 

  • Sharma, D., Kumar, B., Chand, S., & Shah, R. R. (2021). Uncovering research trends and topics of communities in machine learning. Multimedia Tools and Applications, 80(6), 9281–9314.

    Article  Google Scholar 

  • Sheng, Z., Hailong, C., Chuan, J., & Shaojun, Z. (2015). An adaptive time window method for human activity recognition. In 2015 IEEE 28th Canadian conference on electrical and computer engineering (CCECE) (pp. 1188–1192). IEEE.

  • Silvestrini, P., Amato, U., Vettoliere, A., Silvestrini, S., & Ruggiero, B. (2017). Rate equation leading to hype-type evolution curves: A mathematical approach in view of analysing technology development. Technological Forecasting and Social Change, 116, 1–12.

  • Steven, A. G. (2011). Understanding belief using citation networks. Journal of Evaluation in Clinical Practice, 17(2), 389–393.

    Article  Google Scholar 

  • Su, L. X., Lyu, P. H., Yang, Z., & Ding, S. (2015). Scientometric cognitive and evaluation on smart city related construction and building journals data. Scientometrics, 105(1), 449–470.

    Article  Google Scholar 

  • Sud, P., & Thelwall, M. (2014). Evaluating altmetrics. Scientometrics, 98(2), 1131–1143.

    Article  Google Scholar 

  • Sun, J. M., Yu, P. S., Papadimitriou, S., & Faloutsos, C. (2007). GraphScope: Parameter-free mining of large Time-eevolving graphs. In Proceedings of the 13th ACM Sigkdd international conference on Knowledge discovery and data mining (pp. 687–696). New York: ACM.

  • Sun, X., & Ding, K. (2018). Identifying and tracking scientific and technological knowledge memes from citation networks of publications and patents. Scientometrics, 116(3), 1735–1748.

    Article  Google Scholar 

  • Symeon, P., Yiannis, K., Athena, V., & Ploutarchos, S. (2012). Community detection in social media, performance and application considerations. Journal of Data Mining Knowledge Discovery, 24(3), 515–554.

    Article  Google Scholar 

  • The, Y. W., Jordan, M. I., Beal, M. J., & Blei, D. M. (2006). Hierarchical Dirichlet processes. Journal of the American Statistical Association, 101, 1566–1581.

    Article  MathSciNet  MATH  Google Scholar 

  • Tseng, Y. H., Lin, C. J., & Lin, Y. I. (2007). Text mining techniques for patent analysis. Information Processing & Management, 43(5), 1216–1247.

    Article  Google Scholar 

  • Vaio, G. D., & Weisdorf, J. L. (2009). Ranking economic history journals: A citation-based impact-adjusted analysis. Discussion Papers, 4(1), 1–17.

    Google Scholar 

  • Van Raan, A. F. (2004). Sleeping beauties in science. Scientometrics, 59(3), 467–472.

    Article  Google Scholar 

  • Verma, M. (2017). Cluster based ranking index for enhancing recruitment process using text mining and machine learning. International Journal of Computer Applications, 157(9), 23–30.

    Article  Google Scholar 

  • Wang, B., Liu, S., Ding, K., Liu, Z., & Xu, J. (2014a). Identifying technological topics and institution-topic distribution probability for patent competitive intelligence analysis: A case study in LTE technology. Scientometrics, 101(1), 685–704.

    Article  Google Scholar 

  • Wang, C., Blei, D., & Heckerman, D. (2008). Continuous time dynamic topic models. In Proceedings of the international conference on uncertainty in artificial intelligence (pp. 579–586).

  • Wang, Q., She, J., Song, T., Tong, Y., Chen, L., & Xu, K. (2016). Adjustable time-window-based event detection on twitter. In international conference on web-age information management (pp. 265–278). Springer, Cham.

  • Wang, X., & Mccallum, A. (2006). Topics over time: a non-Markov continuous-time model of topical trends. In Acm Sigkdd International conference on knowledge discovery & data mining (pp. 424–433). ACM.

  • Wang, X., Cheng, Q., & Lu, W. (2014b). Analyzing evolution of research topics with NEViewer: A new method based on dynamic co-word networks. Scientometrics, 101(2), 1253–1271.

    Article  Google Scholar 

  • Wang, Y., Liu, Z., & Sun, M. (2015). Incorporating linguistic knowledge for learning distributed word representations. PloS one, 10(4), e0118437.

    Article  Google Scholar 

  • Wasserman, S., & Faust, K. (1994). Social network analysis methods and applications. Contemporary Sociology, 91(435).

  • Wu, H., Yi, H., & Li, C. (2021). An integrated approach for detecting and quantifying the topic evolutions of patent technology: a case study on graphene field. Scientometrics, 126, 1–21.

    Article  Google Scholar 

  • Xie, J., Kelley, S., & Szymanski, B. K. (2013). Overlapping community detection in networks: The state-of-the-art and comparative study. Acm Computing Surveys (csur), 45(4), 1–35.

    Article  MATH  Google Scholar 

  • Xu, Y., Zhang, S., Zhang, W., Yang, S., & Shen, Y. (2019). Research front detection and topic evolution based on topological structure and the PageRank algorithm. Symmetry, 11(3), 310.

    Article  Google Scholar 

  • Xu, H., Winnink, J., Yue, Z., Liu, Z., & Yuan, G. (2020). Topic-linked innovation paths in science and technology. Journal of Informetrics, 14(2), 101014.

    Article  Google Scholar 

  • Yan, C., Yi, C., Wu, L., & Fang, J. (2015). Trend Feature Extraction in Condition Monitoring by a New Piecewise Linear Representation Method. In First international conference on information sciences, machinery, materials and energy (pp. 1378–1383). Atlantis Press.

  • Yang, B., Liu, D., & Liu, J. (2010). Discovering communities from social networks: methodologies and applications. In Handbook of social network technologies and applications (pp. 331–346). Springer.

  • Yang, Y., Wu, M., & Cui, L. (2012). Integration of three visualization methods based on co-word analysis. Scientometrics, 90(2), 659–673.

    Article  Google Scholar 

  • Yau, C. K., Porter, A., Newman, N., & Suominen, A. (2014). Clustering scientifc documents with topic modeling. Scientometrics, 100(3), 767–786.

    Article  Google Scholar 

  • You, H., Li, M., Hipel, K. W., et al. (2017). Development trend forecasting for coherent light generator technology based on patent citation network analysis. Scientometrics, 111(1), 297–315.

    Article  Google Scholar 

  • Zeng, Q., Hu, X., & Li, C. (2019). Extracting keywords with topic embedding and network structure analysis. Data Analysis and Knowledge Discovery, 3(7), 52–60.

    Google Scholar 

  • Zhang, F., & Wu, S. (2021). Measuring academic entities’ impact by content-based citation analysis in a heterogeneous academic network. Scientometrics, 126, 1–26.

    Article  Google Scholar 

  • Zhang, Y., Lu, J., Liu, F., Liu, Q., Porter, A., Chen, H., et al. (2018). Does deep learning help topic extraction? a kernel k-means clustering method with word embedding. Journal of Informetrics, 12(4), 1099–1117.

    Article  Google Scholar 

  • Zhang, Y., Porter, A. L., Hu, Z., Guo, Y., & Newman, N. C. (2014). “Term clumping” for technical intelligence: A case study on dye-sensitized solar cells. Technological Forecasting and Social Change, 85, 26–39.

    Article  Google Scholar 

  • Zhang, Y., Wu, M., Miao, W., Huang, L., & Lu, J. (2021). Bi-layer network analytics: A methodology for characterizing emerging general-purpose technologies. Available at SSRN 3830937.

  • Zhang, Y., Zhang, G., Zhu, D., & Lu, J. (2017). Scientific evolutionary pathways: Identifying and visualizing relationships for scientific topics. Journal of the Association for Information Science & Technology, 68(8), 1925–1939.

    Article  Google Scholar 

  • Zhou, D., Ji, X., Zha, H., & Giles, C. L. (2006). Topic evolution and social interactions: how authors effect research. In Proceedings of the 15th ACM international conference on Information and knowledge management (pp. 248–257).

  • Zhou, H. K., Yu, H., & Hu, R. (2017). Topic evolution based on the probabilistic topic model: A review. Frontiers of Computer Science, 11(5), 786–802.

    Article  Google Scholar 

  • Zhou, P., & Jiang, D. (2020). Study on the evolution of hot topics in the urban development. Evolutionary Intelligence. https://doi.org/10.1007/s12065-020-00391-y

    Article  Google Scholar 

  • Zhou, X., Huang, L., Porter, A., Vicentegomila, J. M., & Phillips, F. (2019). Tracing the system transformations and innovation pathways of an emerging technology: solid lipid nanoparticles. Technological Forecasting and Social Change, 146, 785–794.

    Article  Google Scholar 

  • Zhu, J., Li, X., Peng, M., Huang, J., Qian, T., Huang, J., Liu, J., Hong, R. & Liu, P. (2015). Coherent topic hierarchy: A strategy for topic evolutionary analysis on microblog feeds. In International conference on web-age information management (pp. 70–82). Springer, Cham.

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China Funds [Grant No. 71774013]. Yi Zhang acknowledges supports from the Australian Research Council under Discovery Early Career Researcher Award DE190100994.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, L., Chen, X., Zhang, Y. et al. Identification of topic evolution: network analytics with piecewise linear representation and word embedding. Scientometrics 127, 5353–5383 (2022). https://doi.org/10.1007/s11192-022-04273-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-022-04273-1

Keywords

Navigation