Skip to main content
Log in

Discovering and assessing fields of expertise in nanomedicine: a patent co-citation network perspective

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Discovering and assessing fields of expertise in emerging technologies from patent data is not straightforward. First, patent classification in an emerging technology being far from complete, the definitions of the various applications of its inventions are embedded within communities of practice. Because patents must contain full record of prior art, co-citation networks can, in theory, be used to identify and delineate the inventive effort of these communities of practice. However, the use patent citations for the purpose of measuring technological relatedness is not obvious because they can be added by examiners. Second, the assessment of the development stage of emerging industries has been mostly done through simple patent counts. Because patents are not all valuable, a better way of evaluating an industry’s stage of development would be to use multiple patent quality metrics as well as economic activity agglomeration indicators. The purpose of this article is to validate the use of (1) patent citations as indicators of technological relatedness, and (2) multiple indicators for assessing an industry’s development stage. Greedy modularity optimization of the ‘Canadian-made’ nanotechnology patent co-citation network shows that patent citations can effectively be used as indicators of technological relatedness. Furthermore, the use of multiple patent quality and economic agglomeration indicators offers better assessment and forecasting potential than simple patent counts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abraham, B. P., & Moitra, S. D. (2001). Innovation assessment through patent analysis. Technovation, 21, 245–252.

    Article  Google Scholar 

  • Acs, Z. J., & Audretsch, D. B. (1989). Patents as a measure of innovative activity. Kyklos, 42(2), 171–180.

    Article  Google Scholar 

  • Albert, M. B., Avery, D., Narin, F., & McAllister, P. (1991) Direct validation of citation counts as indicators of industrially important patents. Research Policy, 20(3), 251–259.

    Google Scholar 

  • Alcácer, J., & Gittelman, M. (2006) Patent citations as a measure of knowledge flows: The influence of examiner citations. Review of Economics and Statistics, 88(4), 774–779.

    Google Scholar 

  • Alcácer, J., Gittelman, M., & Sampat, B. (2009) Applicant and examiner citations in U.S. patents: An overview and analysis. Research Policy, 38(2), 415-427.

    Google Scholar 

  • Alencar, M. S. M., Porter, A. L., & Antunes, A. M. S. (2007). Nanopatenting patterns in relation to product life cycle. Technological Forecasting and Social Change, 74(9), 1661–1680.

    Article  Google Scholar 

  • Allison, J. R., Lemley, M. A., Moore, K. A., & Trunkey, R. D. (2004) Valuable patents. Georgetown Law Journal, 92(3), 435–479.

    Google Scholar 

  • Andersen, B. (1999). The hunt for S-shaped growth paths in technological innovation: A patent study. Journal of Evolutionary Economics, 9, 487–526.

    Article  Google Scholar 

  • Archibugi, D., & Pianta, M. (1996). Measuring technological change through patents and innovation surveys. Technovation, 16(9), 451–468.

    Article  Google Scholar 

  • Audretsch, D. B., & Feldman, M. P. (1996) R&D spillovers and the geography of innovation and production. American Economic Review, 86(3), 630–640.

    Google Scholar 

  • Azagra-Caro, J. M., Mattsson, P., & Perruchas, F. (2011) Smoothing the lies: The distinctive effects of patent characteristics on examiner and applicant citations. Journal of the American Society for Information Science and Technology, 62(9), 1727–1740.

    Google Scholar 

  • Barabási, A.-L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512.

    Article  MathSciNet  Google Scholar 

  • Barirani, A., Agard, B., & Beaudry, C. (2011). Competencce maps using agglomerative hierarchical clustering. Journal of Intelligent Manufacturing. doi:10.1007/s10845-011-0600-y.

  • Breitzman, A. (2005). Automated identification of technologically similar organizations. Journal of the American Society for Information Science and Technology, 56(10), 1015–1023.

    Article  Google Scholar 

  • Breitzman, A. F., & Mogee, M. E. (2002). The many applications of patent analysis. Journal of Information Science, 28(3), 187–205.

    Article  Google Scholar 

  • Callaert, J., Van Looy, B., Verbeek, A., Debackere, K., & Thijs, B. (2006) Traces of prior art: An analysis of non-patent references found in patent documents. Scientometrics, 69(1), 3–20.

    Google Scholar 

  • Carpenter, M. P., Narin, F., & Wolf, P. (1981). Citation rates to technologically important patents. World Patent Information, 3(4), 160–163.

    Article  Google Scholar 

  • Chang, C. K. N., & Breitzman, A. (2009). Using patents prospectively to identify emerging, high-impact technological clusters. Research Evaluation, 18(5), 357–364.

    Article  Google Scholar 

  • Chang, P.-L., Wu, C.-C., & Leu, H.-J. (2010). Using patent analyses to monitor the technological trends in an emerging field of technology: A case of carbon nanotube field emission display. Scientometrics, 82, 5–19.

    Article  Google Scholar 

  • Cheng, Y.-H., Kuan, F.-Y., Chuang, S.-C., & Ken, Y. (2010). Profitability decided by patent quality? An empirical study of the US semiconductor industry. Scientometrics, 82, 175–183.

    Article  Google Scholar 

  • Clauset, A., Newman, M. E. J., & Moore, C. (2004). Finding community structure in very large networks. Physical Review E, 70, 066111.

    Article  Google Scholar 

  • Cohen, W. M., Nelson, R. R., & Walsh, J. P. (2000). Protecting their intellectual assets: Appropriability conditions and why US manufacturing firms patent (or not). NBER Working Paper No. 7552.

  • Daim, T. U., Rueda, G., Martin, H., & Gerdsri, P. (2006). Forecasting emerging technologies: Use of bibliometrics and patent analysis. Technological Forecasting and Social Change, 73, 981–1012.

    Article  Google Scholar 

  • Dang, Y., Zhang, Y., Fan, L., Chen, H., & Roco, M. C. (2010). Trends in worldwide nanotechnology patent applications: 1991 to 2008. Journal of Nanoparticle Research, 12(3), 687–706.

    Article  Google Scholar 

  • Dechenaux, E., Goldfarb, B., Shane, S., & Thursby, M. (2008). Appropriability and commercialization—Evidence from MIT inventions. Management Science, 54(5), 893–906.

    Article  Google Scholar 

  • ESF (2005). Nanomedicine. European Science Foundation.

  • Fitzgibbons, K., & McNiven, C. (2006). Towards a nanotechnology statistical framework, Blue Sky Indicators Conference II.

  • Fleming, L. (2001). Recombinant uncertainty in technological search. Management Science, 47(1), 117–132.

    Article  Google Scholar 

  • Fleming, L., & Sorenson, O. (2001). Technology as a complex adaptive system: Evidence from patent data. Research Policy, 30, 1019–1039.

    Article  Google Scholar 

  • Fortunato, (2010). Community detection in graphs. Physics Reports, 486, 75–174.

    Article  MathSciNet  Google Scholar 

  • Freitas, R. A. (2005). What is nanomedicine? Disease-a-month, 51(6), 325–341.

    Article  Google Scholar 

  • Gallini, N. T. (2002). The economics of patents: Lessons from recent US patent reform. Journal of Economic Perspectives, 16(2), 131–154.

    Article  Google Scholar 

  • Girvan, M., & Newman, M. E. J. (2002). Community structure in social and biological networks. PNAS, 99(12), 7821–7826.

    Article  MathSciNet  MATH  Google Scholar 

  • Grieneisen, M. L. (2010). The proliferation of nano journals. Nature Nanotechnology, 5(12), 825.

    Article  Google Scholar 

  • Hall, B. H., Jaffe, A., & Trajtenberg, M. (2005). Market value and patent citations. The Rand Journal of Economics, 36(1), 16–38.

    Google Scholar 

  • Hall, B. H., & Ziedonis, R. H. (2001). The patent paradox revisited: An empirical study of patenting in the U.S. semiconductor industry, 1979–1995. The Rand Journal of Economics, 32(1), 101–128.

    Article  Google Scholar 

  • Harel, D., & Koren, Y. (2002). Graph drawing by high-dimensional embedding. Proceedings of the 9th International Symposium on Graph Drawing, pp. 207–219.

  • Hedge, D., & Sampat, B. (2009). Examiner citations, applicant citations, and the private value of patents. Economics Letters, 105, 287–289.

    Article  Google Scholar 

  • Huang, C., Notten, A., & Rasters, N. (2011). Nanoscience and technology publications and patents: A review of social science studies and search strategies. Journal of Technology Transfer, 36(2), 145–172.

    Article  Google Scholar 

  • Hullmann, A., & Meyer, M. (2003). Publications and patents in nanotechnology: an overview of previous studies and the state of the art. Scientometrics, 58(3), 507–527.

    Article  Google Scholar 

  • Hullmann, A. (2006). Who is winning the global nanorace? Nature Nanotechnology, 1(2), 81–83.

    Article  Google Scholar 

  • Jaffe, A. B., Trajtenberg, M. & Henderson, R. (1993) Geographic localization of knowledge spillovers as evidenced by patent citations. The Quarterly Journal of Economics, 108(3), 577–598.

    Google Scholar 

  • Kostoff, R. N., Koytcheff, R. G., & Lau, C. G. Y. (2007). Global nanotechnology research metrics. Scientometrics, 70(3), 565–601.

    Article  Google Scholar 

  • Krugman, P. R. (1991) Increasing returns and economic geography. Journal of Political Economy, 99(3), 483–499.

    Google Scholar 

  • Lanjouw, J. O., & Schankerman, M. (2004) Patent quality and research productivity: Measuring innovation with multiple indicators. Economic Journal, 114(495), 441–465.

    Google Scholar 

  • Lerner, J. (1994) The importance of patent scope: An empirical analysis. RAND Journal of Economics, 25(2), 319–333.

    Google Scholar 

  • Leydesdorff, L. (2008). Patent classifications as indicators of intellectual organization. Journal of the American Society for Information Science and Technology, 59(10), 1582–1597.

    Article  Google Scholar 

  • Li, X., Chen, H., Huang, Z., & Roco, M. C. (2007a). Patent citation network in nanotechnology (1976–2004). Journal of Nanoparticle Research, 9, 337–352.

    Article  Google Scholar 

  • Li, X., Chen, H., Zhang, Z., & Li, J. (2007b). Automatic patent classification using citation network information: An experimental study in nanotechnology. Proceedings of the 7th ACM/IEE Joint Conference on Digital Libraries, pp. 419–427.

  • Li, X., Lin, Y., Chen, H., & Roco, M. C. (2007c). Worldwide nanotechnology development—A comparative study of USPTO EPO and JPO. Journal of Nanoparticle Research, 9, 977–1002.

    Article  Google Scholar 

  • Li, X., Hu, D., Dang, Y., Chen, H., Roco, M. C., Larson, C. A., et al. (2009). Nano Mapper: An Internet knowledge mapping system for nanotechnology development. Journal of Nanoparticle Research, 11(3), 529–552.

    Article  Google Scholar 

  • Maghrebi, M., Abbasi, A., Amiri, S., Monsefi, R., & Harati, A. (2011). A collective and abridged lexical query for delineation of nanotechnology publications. Scientometrics, 86, 15–25.

    Article  Google Scholar 

  • Martin, B. R. (1995). Foresight in science and technology. Technology Analysis & Strategic Management, 7(2), 139–168.

    Article  Google Scholar 

  • Malmberg, A., & Maskell, P. (2002) The elusive concept of localization economies: Towards a knowledge-based theory of spatial clustering. Environment and Planning A, 34(3), 429–449.

    Google Scholar 

  • Merges, R. P., & Nelson, R. R. (1990) On the complex economics of patent scope. Columbia Law Review, 90(4), 839–916.

    Google Scholar 

  • Meyer, P. (1994) Bi-logistic growth. Technological Forecasting and Social Change, 47(1), 89–102.

  • Meyer, M. (2000a). What is special about patent citations? Differences between scientific and patent citations. Scientometrics, 49(1), 93–123.

    Article  Google Scholar 

  • Meyer, M. (2000b). Patent citations in a novel field of technology: What can they tell about interactions between emerging communities of science and technology. Scientometrics, 48(2), 151–178.

    Article  Google Scholar 

  • Meyer, M., & Persson, O. (1998). Nanotechnology: Interdisciplinarity, patterns of collaboration and differences in application. Scientometrics, 42(2), 195–205.

    Article  Google Scholar 

  • Mogoutov, A., & Kahane, B. (2007). Data search strategy for science and technology emergence: A scalable and evolutionary query for nanotechnology tracking. Research Policy, 36, 893–903.

    Article  Google Scholar 

  • Moore, K. A. (2005). Worthless patent’s. George Mason Law & Economics Research Paper No. 04-29.

  • Narin, F. (1994). Patent bibliometrics. Scientometrics, 30(1), 147–155.

    Article  Google Scholar 

  • Narin, F., & Hamilton, K. S. (1996). Bibliometric performance measures. Scientometrics, 36(3), 293–310.

    Article  Google Scholar 

  • Nerkar, A., & Shane, S. (2007). Determinants of invention commercialization: An empirical examination of academically sourced inventions. Strategic Management Journal, 28, 1155–1166.

    Article  Google Scholar 

  • Newman, M. E. J., & Girvan, M. (2004). Finding and evaluating community structure in networks. Physical Review E, 69, 026113.

    Article  Google Scholar 

  • Owen-Smith, J., & Powell, W. W. (2004) Knowledge networks as channels and conduits: The effects of spillovers in the Boston biotechnology community. Organization Science, 15(1), 5-21.

    Google Scholar 

  • Pavitt, K. (1985). Patent statistics as indicators of innovative activities: Possibilities and problems. Scientometrics, 7(1–2), 77–99.

    Article  Google Scholar 

  • Pei, R., & Porter, A. L. (2011). Profiling leading scientists in nanobiomedical science: Interdisciplinarity and potential leading indicators of research directions. R&D Management, 41(3), 288–306.

    Article  Google Scholar 

  • Perkel, J. M. (2004). The ups and downs of nanobiotech. The Scientist, 18(16), 14–18.

    Google Scholar 

  • Porter, M. E. (1998) Clusters and the new economics of competition. Harvard Business Review, 76(6), 77–90.

    Google Scholar 

  • Porter, A. L., Youtie, J., Shapira, P., & Schoeneck, D. J. (2008). Refining search terms for nanotechnology. Journal of Nanoparticle Research, 10(5), 715–728.

    Article  Google Scholar 

  • Reitzig, M., Henkel, J., & Hearth, C. (2007). On sharks, trolls, and their patent prey—Unrealistic damage awards and firms’ strategies of “being infringed”. Research Policy, 36, 134–154.

    Article  Google Scholar 

  • Rosenberg, N. (1994). Exploring the black box: Technology, economics, and history. New York: Cambridge University Press.

    Book  Google Scholar 

  • Sampat, B. N. (2005) Determinants of patent quality: An empirical analysis. Working Paper. Available at http://www.immagic.com/eLibrary/ARCHIVES/GENERAL/COLUMBIA/C050902S.pdf.

  • Schmoch, U., Heinze, T., Hinze, S., & Rangnow, R. (2003). Mapping excellence in science and technology across Europe: Nanoscience and nanotechnology. Centre for Science and Technology Studies.

  • Small, H. (1973). Co-citation in the scientific literature: A new measure of the relationship between two documents. Journal of the American Society for Information Science, July–August, pp. 265–269.

  • Takeda, Y., Mae, S., Kajikawa, Y., & Matsushima, K. (2009). Nanobiotechnology as an emerging research field from nanotechnology: A bibliometric approach. Scientometrics, 80(1), 23–38.

    Article  Google Scholar 

  • Tong, X., & Frame, J. D. (1994) Measuring national technological performance with patent claims data. Research Policy, 23(2), 133–141.

    Google Scholar 

  • Trajtenberg, (1990). A penny for your quotes: Patent citations and the value of innovations. The Rand Journal of Economics, 21(1), 172–187.

    Article  Google Scholar 

  • Wallace, M. L., Gingras, Y., & Duhon, R. (2009) A new approach for detecting scientific specialties from raw cocitation networks. Journal of the American Society for Information Science and Technology, 60(2), 240–246.

    Google Scholar 

  • Watts, R. J., & Porter, A. L. (1997). Innovation forecasting. Technological Forecasting and Social Change, 56(1), XIV–XIV47.

    Article  Google Scholar 

  • Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393(6684), 440–442.

    Article  Google Scholar 

  • Webster, E., & Jensen, P. H. (2011). Do patents matter for commercialization? Journal of Law and Economics, 54(2), 431–453.

    Article  Google Scholar 

  • Wenger, E. (1999) Communities of practice: Learning, meaning, and identity. Cambridge University Press.

  • Zitt, M., & Bassecoulard, E. (2006). Delineating complex scientific fields by an hybrid lexical-citation method: An application to nanosciences. Information Processing and Management, 42, 1513–1531.

    Article  Google Scholar 

  • Zucker, L. G., Darby, M. R., & Brewer, M. B. (1998) Intellectual human capital and the birth of US biotechnology enterprises. American Economic Review, 88(1), 290–306.

    Google Scholar 

Download references

Acknowledgments

We would like to thank the SSHRC, the CIHR and the NSERC for their financial support. We are also immensely indebted to two anonymous reviewers who have contributed to raising the quality of this article through their insightful comments and recommendations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Agard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barirani, A., Agard, B. & Beaudry, C. Discovering and assessing fields of expertise in nanomedicine: a patent co-citation network perspective. Scientometrics 94, 1111–1136 (2013). https://doi.org/10.1007/s11192-012-0891-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-012-0891-6

Keywords

Navigation