Skip to main content
Log in

The structure and analysis of nanotechnology co-author and citation networks

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Research activities and collaborations in nanoscale science and engineering have major implications for advancing technological frontiers in many fields including medicine, electronics, energy, and communication. The National Nanotechnology Initiative (NNI) promotes efforts to cultivate effective research and collaborations among nano scientists and engineers to accelerate the advancement of nanotechnology and its commercialization. As of August 2008, there have been over 800 products considered to benefit from nanotechnology directly or indirectly. However, today’s accomplishments in nanotechnology cannot be transformed into commercial products without productive collaborations among experts from disparate research areas such as chemistry, physics, math, biology, engineering, manufacturing, environmental sciences, and social sciences. To study the patterns of collaboration, we build and analyze the collaboration network of scientists and engineers who conduct research in nanotechnology. We study the structure of information flow through citation network of papers authored by nano area scientists. We believe that the study of nano area co-author and paper citation networks improve our understanding of patterns and trends of the current research efforts in this field. We construct these networks based on the publication data collected for years ranging 1993 through 2008 from the scientific literature database “Web of Science”. We explore those networks to find out whether they follow power-law degree distributions and/or if they have a signature of hierarchy. We investigate the small-world characteristics and the existence of possible community structures in those networks. We estimate the statistical properties of the networks and interpret their significance with respect to the nano field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abello, J., Pardalos, P. M., & Resende, M. G. C. (1999). On maximum clique problems in very large graphs. DIMACS Series, 50, 119–130.

    MathSciNet  Google Scholar 

  • Adamic, L. A., Lukose, R. M., Puniyani, A. R., & Huberman, B. A. (2001). Search in power-law networks. Physical Review E, 64, 046135.

    Google Scholar 

  • Aiello, W., Chung, F., & Lu, L. (2000). A random graph model for massive graphs. In Proceedings of the thirty-second annual ACM symposium on theory of computing (pp. 171–180). Portland, OR.

  • Albert, R., Albert, I., & Nakarado, G. L. (2004). Structural vulnerability of the North American power grid. Physical Review E, 69, 025103.

  • Albert, R., & Barabasi, A. L. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics, 74, 47–97.

    Article  MathSciNet  MATH  Google Scholar 

  • Albert, R., Jeong, H., & Barabasi, A. L. (1999). Diameter of the World Wide Web. Nature, 401, 130–131.

    Article  Google Scholar 

  • Albert, R., Jeong, H., & Barabasi, A. L. (2000). Attack and error tolerance of complex networks. Nature, 406, 378–382.

    Article  Google Scholar 

  • Amaral, L. A. N., Scala, A., Barthelemy, M., & Stanley, H. E. (2000). Classes of behavior of small-world networks. Proceedings of the National Academy of Sciences of the USA, 97(21), 11149–11152.

    Article  Google Scholar 

  • Barabasi, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286, 509–512.

    Article  MathSciNet  Google Scholar 

  • Barabasi, A. L., Jeong, H., Neda, Z., Ravasz, E., Schubert, A., & Vicsek, T. (2002). Evolution of the social network of scientific collaborations. Physica A, 311, 590–614.

    Article  MathSciNet  MATH  Google Scholar 

  • Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., & Hwang, D. U. (2006). Complex networks: Structure and dynamics. Physics Reports, 424, 175–308.

    Article  MathSciNet  Google Scholar 

  • Borner, K., Maru, J. T., & Goldstone, R. L., (2003). Colloquium on mapping knowledge domains. Irvine, CA.

  • Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., et al. (2000). Graph structure in the web. In 9th International World Wide Web conference (WWW9) (Vol. 33, pp. 309–320). Amsterdam, Netherlands.

  • Cancho, R. F., Janssen, C., & Sole, R. V. (2001). Topology of technology graphs: Small world patterns in electronic circuits. Physical Review E, 64(4), 046119.

    Google Scholar 

  • Clauset, A., Newman, M. E. J., & Moore, C. (2004). Finding community structure in very large networks. Physical Review E, 70, 066111.

    Article  Google Scholar 

  • Clauset, A., Shalizi, C. R., & Newman, M. E. J. (2009). Power-law distributions in empirical data. SIAM Review, 51(4), 661–703.

    Article  MathSciNet  MATH  Google Scholar 

  • Contractor, N. S., Wasserman, S., & Faust, K. (2006). Testing multi-theoretical multilevel hypotheses about organizational networks: An analytic framework and empirical example. Academy of Management Review, 31(3), 681–703.

    Article  Google Scholar 

  • Dorogovtsev, S. N., & Mendes, J. F., F., (2003). Evolution of networks: From biological nets to the Internet and WWW. Oxford: Oxford University Press.

  • Faloutsos, M., Faloutsos, P., & Faloutsos, C. (1999). On power-law relationships of the internet topology. In R. Guerin (Ed.), ACM conference on applications, technologies, architectures, and protocols for computer communications (SIGCOMM 99) (pp. 251–262). Cambridge, MA.

  • Flake, G., Lawrence, S., & Giles, C. L. (2000). Efficient identification of web communities. In Sixth ACM SIGKDD international conference on knowledge discovery and data mining (pp. 150–160). New York: ACM Press.

  • Govindan, R., & Tangmunarunkit, H. (2000). Heuristics for internet map discovery. In Proceedings of the IEEE Infocom (Vol. 3, pp. 1371–1380). Tel-Aviv, Israel.

  • Huberman, B. A., & Adamic, L. A. (1999). Internet—growth dynamics of the World-Wide Web. Nature, 401(6749), 131.

    Google Scholar 

  • Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N., & Barabasi, A.-L. (2000). The large-scale organization of metabolic networks. Nature, 407, 651–654.

    Article  Google Scholar 

  • Krause, A. E., Frank, K. A., Mason, D. M., Ulanowicz, R. E., & Taylor, W. W. (2003). Compartments revealed in food-web structure. Nature, 426, 282–285.

    Article  Google Scholar 

  • Kumar, R., Raghavan, P., Rajalopagan, S., Sivakumar, D., Tomkins, A., & Upfal, E. (2000). The web as a graph. In Proceedings of the nineteenth ACM SIGMOD-SIGACT-SIGART symposium on principles of database systems (pp. 1–10). Madison, WI.

  • Leicht, E. A., Clarkson, G., Shedden, K., & Newman, M. E. J. (2007). Large-scale structure of time evolving citation networks. European Physical Journal B, 59, 75–83.

    Article  MATH  Google Scholar 

  • Milgram, S. (1967). The small world problem. Psychology Today, 2, 60–67.

    Google Scholar 

  • Newman, M. E. J. (2001a). The structure of scientific collaboration networks. Proceedings of the National Academy of Sciences of the USA, 98, 404–409.

    Article  MATH  Google Scholar 

  • Newman, M. E. J. (2001b). Scientific collaboration networks: I. Network construction and fundamental results. Physical Review E, 64(1), 8.

    Google Scholar 

  • Newman, M. E. J. (2001c). Scientific collaboration networks: II. Shortest paths, weighted networks, and centrality. Physical Review E, 64, 7.

    Google Scholar 

  • Newman, M. E. J. (2003). The structure and function of complex networks. SIAM Review, 45, 167–256.

    Article  MathSciNet  MATH  Google Scholar 

  • Newman, M. E. J., Barabasi, A.-L., & Watts, D. J. (2006). The structure and dynamics of networks. Princeton: Princeton University Press.

    MATH  Google Scholar 

  • Newman, M. E. J., & Girvan, M. (2004). Finding and evaluating community structure in networks. Physical Review E, 69(2), 15.

    Article  Google Scholar 

  • Nooy, W., Mrvar, A., & Batagelj, V. (2005). Exploratory social network analysis with Pajek. New York: Cambridge University Press.

    Google Scholar 

  • NWB Team. (2006). Network workbench tool. Indiana University, Northeastern University, University of Michigan, http://nwb.slis.indiana.edu.

  • Palla, G., Derenyi, I., Farkas, I., & Vicsek, T. (2005). Uncovering the overlapping community structure of complex networks in nature and society. Nature, 435, 814–818.

    Article  Google Scholar 

  • Pastor-Satorras, R., & Vespignani, A. (2001a). Epidemic dynamics and endemic states in complex networks. Physical Review E, 63(6), 066117.

    Google Scholar 

  • Pastor-Satorras, R., & Vespignani, A. (2001b). Epidemic spreading in scale-free networks. Physical Review Letters, 86, 3200–3203.

    Article  Google Scholar 

  • Pastor-Satorras, R., & Vespignani, A. (2002a). Epidemic dynamics in finite size scale-free networks. Physical Review E, 65(3), 035108.

    Google Scholar 

  • Pastor-Satorras, R., & Vespignani, A. (2002b). Immunization of complex networks. Physical Review E, 65(3), 036104.

    Google Scholar 

  • Pastor-Satorras, R., & Vespignani, A. (2003). Epidemics and immunization in scale-free networks. In Handbook of graphs and networks. Wiley-VCH, Berlin.

  • Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., & Parisi, D. (2004). Defining and identifying communities in networks. Proceedings of the National Academy of Sciences of the USA, 101, 2658–2663.

    Article  Google Scholar 

  • Shi, X., Tseng, B., & Adamic, L. (2009). Information diffusion in computer science citation networks. San Jose, CA: The International Conference on Weblogs and Social Media.

    Google Scholar 

  • Strogatz, S. H. (2001). Exploring complex networks. Nature, 410, 268–276.

    Article  Google Scholar 

  • Wasserman, S., & Faust, K. (1994). Social network analysis. Cambridge: Cambridge University Press.

  • Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of “small-world” networks. Nature, 393, 440–442.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sagar Kamarthi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Onel, S., Zeid, A. & Kamarthi, S. The structure and analysis of nanotechnology co-author and citation networks. Scientometrics 89, 119–138 (2011). https://doi.org/10.1007/s11192-011-0434-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-011-0434-6

Keywords

Navigation