Skip to main content
Log in

The emergence of social science research on nanotechnology

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

This article examines the development of social science literature focused on the emerging area of nanotechnology. It is guided by the exploratory proposition that early social science work on emerging technologies will draw on science and engineering literature on the technology in question to frame its investigative activities, but as the technologies and societal investments in them progress, social scientists will increasingly develop and draw on their own body of literature. To address this proposition the authors create a database of nanotechnology-social science literature by merging articles from the Web of Science’s Social Science Citation Index and Arts and Humanities Citation Index with articles from Scopus. The resulting database comprises 308 records. The findings suggest that there are multiple dimensions of cited literature and that social science citations of other social scientists’ works have increased since 2005.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. See, for example, the Society for the Study of Nanoscience and Emerging Technologies, http://www.thesnet.net. Accessed December 20, 2009, and an earlier organization, the International Nanotechnology and Society Network. http://www.nanoandsociety.com. Accessed December 20, 2009.

  2. See http://www.nanopolicy.gatech.edu

  3. The Web of Science (Thomson Reuters) indexes over 10,000 journals worldwide, including more than 2,400 in social sciences and nearly 1,400 in arts and humanities. See: http://thomsonreuters.com/products_services/science/science_products/a-z/web_of_science. Accessed December 20, 2009.

  4. Scopus (Elsevier B.V) indexes over 16,500 peer-reviewed journals including more than 6,400 titles in social sciences and about 2,300 in arts and humanities, see: http://info.scopus.com. Accessed December 20, 2009.

  5. Subject Categories are part of the Journal Citation Reports of the Institute for Scientific Information (ISI) of Thomson Scientific’s Web of Knowledge. These subject categories derive from a combination of inter-journal citation data and expert editorial perspective on what constitute research domains.

  6. The VantagePoint version 5.1 autocorrelation function was used to generate this map. VantagePoint software is described at: http://www.theVantagePoint.com.

  7. There are other maps of science based on more detailed data structures, see for example, Boyack et al. 2005; and Scitech Strategies, Inc., 2008.

  8. This reflects analysis of the SSCI cited references using thesauri that associate journal names to the Subject Categories. This was enhanced by manual assignment of Scopus reference source names, and consolidation with the SSCI tallies.

  9. For more information on Pajek network analysis software, see http://pajek.imfm.si/doku.php?id=pajek.

References

  • Arnall, A. H. (2003). Future technologies, today’s choices: Nanotechnology, artificial intelligence and robotics. London: Greenpeace Environmental Trust.

    Google Scholar 

  • Bachmann, G. (1998). Innovationsschub aus dem Nanokosmos. Technologieanalyse. Düsseldorf: VDI-Technologiezentrum.

    Google Scholar 

  • Bainbridge, W. S. (2002). Public attitudes toward nanotechnology. Journal of Nanoparticle Research, 4, 561–570.

    Article  Google Scholar 

  • Baum, R. (2003). Nanotechnology: Drexler and Smalley make the case for and against ‘molecular assemblers’. Chemical and Engineering News, 81(48), 37–42.

    Google Scholar 

  • Bennett, I., & Sarewitz, D. (2006). Too little, too late? Research policies on the societal implications of nanotechnology in the United States. Science as Culture, 15(4), 309–325.

    Article  Google Scholar 

  • Boyack, K. W., Klavans, R., & Börner, K. (2005). Mapping the backbone of science. Scientometrics, 64(3), 351–374.

    Article  Google Scholar 

  • Braun, T., Schubert, A., & Zsindely, S. (1997). Nanoscience and nanotechnology on the balance. Scientometrics, 38(2), 321–325.

    Article  Google Scholar 

  • Callon, M. (1991). Techno-economic networks and irreversibility. In J. Law (Ed.), A sociology of monsters? Essays on power, technology and domination (pp. 132–161). Ondon: Routledge.

    Google Scholar 

  • Cobb, M. D., & Macoubrie, J. (2004). Public perceptions about nanotechnology: Risks, benefits and trust. Journal of Nanoparticle Research, 6(4), 395–405.

    Article  Google Scholar 

  • Crichton, M. (2002). Prey. New York: HarperCollins Publishers.

    Google Scholar 

  • Darby, M. R., & Zucker, L. G. (2003). Grilichesian breakthroughs: Inventions of methods of inventing and firm entry in nanotechnology (NBER working paper no. 9825). Cambridge, MA: National Bureau of Economic Research.

  • Dosi, G. (1982). Technological paradigms and technological trajectories. Research Policy, 11, 147–162.

    Article  Google Scholar 

  • Drexler, E. K. (1986). Engines of creation: The coming era of nanotechnology. Garden City, NY: Anchor Press/Doubleday.

    Google Scholar 

  • Feynman, R. P. (1960). There’s plenty of room at the bottom. Engineering and Science, 23(5), 22–36.

    Google Scholar 

  • Fisher, E. (2005). Lessons learned from the ethical, legal and social implications program (ELSI): Planning societal implications research for the national nanotechnology program. Technology in Society, 27(3), 321–328.

    Article  Google Scholar 

  • Freitas, R. (1999). Nanomedicine, Volume I: Basic capabilities. Georgetown, TX: Landes Bioscience.

    Google Scholar 

  • Gaskell, G., Bauer, M., Durant, J., & Allum, N. (1999). Worlds apart? The reception of genetically modified foods in Europe and the US. Science, 285(5426), 384–387.

    Article  Google Scholar 

  • Gibbons, M., Limoges, C., Nowotny, H., Schwartzmann, S., Scott, P., & Trow, M. (1994). The new production of knowledge: The dynamics of science and research in contemporary societies. London: Sage.

    Google Scholar 

  • Hicks, D. (2005). The four literatures of social science. In H. Moed, W. Glänzel, & U. Schmoch (Eds.), Handbook of quantitative social science and technology research (pp. 473–496). Netherlands: Springer.

    Chapter  Google Scholar 

  • Hullmann, A. (2008). European activities in the field of ethical, legal and social aspects (ELSA) and governance of nanotechnology. DG Research, Brussels: European Commission.

    Google Scholar 

  • Hullmann, A., & Meyer, M. (2003). Publications and patents in nanotechnology. An overview of previous studies and the state of the art. Scientometrics, 58(3), 507–527.

    Article  Google Scholar 

  • Joint Economic Committee. (2007). Nanotechnology: The future is coming sooner than you think. Washington, DC: United States Congress.

    Google Scholar 

  • Jones, R. (2004). SoftMachines: Nanotechnology and life. Oxford: Oxford University Press.

    Google Scholar 

  • Joy, B. (2000). Why the future doesn’t need us: Our most powerful 21st-century technologies—robotics, genetic engineering, and nanotech—are threatening to make humans an endangered species. Wired, 8 (4).

  • Kostoff, R., Murday, J., Lau, C. G., & Tolles, W. M. (2006). The seminal literature of nanotechnology research. Journal of Nanoparticle Research, 8(2), 193–213.

    Article  Google Scholar 

  • Kurzweil, R. (1999). The age of spiritual machines: When computers exceed human intelligence. London: Viking.

    Google Scholar 

  • Latour, B. (2004). Why has critique run out of steam? From matters of fact to matters of concern. Critical Inquiry, 30(2), 225–248.

    Article  Google Scholar 

  • Lewenstein, B. (2004). What counts as a “social and ethical issue” in nanotechnology? International Journal for Philosophy of Chemistry, 11(1), 5–18.

    Google Scholar 

  • Leydesdorff, L., Cozzens, S. E., & Van Den Besselaar, P. (1994). Tracking areas of strategic importance using scientometric journal mappings. Research Policy, 23, 217–229.

    Article  Google Scholar 

  • Leydesdorff, L., & Rafols, I. (2009). A global map of science based on the ISI subject categories. Journal of the American Society for Information Science and Technology, 60(2), 348–362.

    Article  Google Scholar 

  • Lux Research. (2007). The nanotech report (5th ed.). New York: Lux Research Inc.

    Google Scholar 

  • Macnaghten, P., Kearnes, M., & Wynne, B. (2005). Nanotechnology, governance and public deliberation: What role for the social sciences? Science Communication, 27(2), 268–291.

    Article  Google Scholar 

  • MacOubrie, J. (2002). Logical argument structures in decision-making. Argumentation: An International Journal of Reasoning, 17, 291–313.

    Google Scholar 

  • Malsch, I. (1997). Nanotechnology in Europe: Experts’ perceptions and scientific relations between sub-areas. Seville: Institute for Prospective Technological Studies.

    Google Scholar 

  • Marshall, E. (1996). The genome program’s conscience. Science New Series, 274(5287), 488–490.

    Google Scholar 

  • Meyer, M. (1998). Nanotechnology: interdisciplinarity, patterns of collaboration and differences in application. Scientometrics, 42, 195–205.

    Article  Google Scholar 

  • Meyer, M. (2006). What do we know about innovation in nanotechnology? Some propositions about an emerging field between hype and path-dependency. Paper presented at the 2006 technology transfer society conference, Atlanta, Georgia, September 27–29.

  • Mnyusiwalla, A., Daar, A. S., & Singer, P. A. (2003). Mind the gap: Science and ethics in nanotechnology. Nanotechnology, 14, R3–R13.

    Article  Google Scholar 

  • Moed, H. F. (2005). Citation analysis in research evaluation. Dordrecht: Springer.

    Google Scholar 

  • Narin, F., Hamilton, K. S., & Olivastro, D. (1997). The increasing linkage between US technology and public science. Research Policy, 26(3), 317–330.

    Article  Google Scholar 

  • Nelson, R., & Winter, S. (1982). An evolutionary theory of economic change. Cambridge, MA: Belknap/Harvard University Press.

    Google Scholar 

  • Nordmann, A. (2004). Converging technologies—shaping the future of European societies. Brussels: European Commission.

    Google Scholar 

  • Pavitt, K. (1984). Sectoral patterns of technical change: Towards a taxonomy and a theory. Research Policy, 13(6), 343–373.

    Article  Google Scholar 

  • Porter, A. L., & Chubin, D. E. (1985). An indicator of cross-disciplinary research. Scientometrics, 8(3–4), 161–176.

    Article  Google Scholar 

  • Porter, A. L., Rafols, I., & Meyer, M. (2008). The cognitive geography of nanotechnologies: Locating nano-research in the map of science. Paper Presented at the NBER conference on nanotechnology and nanoindicators, Cambridge, Massachusetts, May 1–2, 2008.

  • Porter, A. L., & Youtie, J. (2009a). How interdisciplinary is nanotechnology? Journal of Nanoparticle Research, 11(5), 1023–1041.

    Article  Google Scholar 

  • Porter, A. L., & Youtie, J. (2009b). Where does nanotechnology belong in the map of science? Nature-Nanotechnology, 4, 534–536.

    Article  Google Scholar 

  • Porter, A. L., Youtie, J., Shapira, P., & Schoeneck, D. (2008b). Refining search terms for nanotechnology. Journal of Nanoparticle Research, 10(5), 715–728.

    Article  Google Scholar 

  • President’s Council of Advisors on Science and Technology. (2008). The national nanotechnology initiative: Second assessment and recommendations of the national nanotechnology advisory panel. Washington DC.

  • Rafols, I., & Meyer, M. (2009). Diversity and network coherence as indicators of interdisciplinarity: Case studies in bionanoscience. Scientometrics (Online).

  • Renn, O., & Roco, M. (2006). Nanotechnology risk governance. IRGC white paper no. 2. Geneva: International Risk Governance Council.

    Google Scholar 

  • Rip, A., Misa, T., & Schot, J. (Eds.). (1995). Managing technology in society: The approach of constructive technology assessment. London: Pinter.

    Google Scholar 

  • Roco, M. C. (2001). International strategy for nanotechnology research. Journal of Nanoparticle Research, 3(5–6), 353–360.

    Article  Google Scholar 

  • Roco, M. C. (2003). Broader societal issues of nanotechnology. Journal of Nanoparticle Research, 5, 181–189.

    Article  Google Scholar 

  • Roco, M. C., & Bainbridge, W. S. (2001). Societal implications of nanoscience and nanotechnology. Arlington, VA: National Science Foundation.

    Google Scholar 

  • Roco, M. C., & Bainbridge, W. S. (2002a). Converging technologies for improving human performance: Integrating from the nanoscale. Journal of Nanoparticle Research, 4(4), 281–295.

    Article  Google Scholar 

  • Roco, M. C., & Bainbridge, W. S. (Eds.). (2002b). Converging technologies for improving human performance. Arlington, Virginia: National Science Foundation.

    Google Scholar 

  • Roco, M. C., & Tomellini, R. (eds.). (2002). Nanotechnology: Revolutionary opportunities and societal implications. 3rd joint EC-NSF workshop on nanotechnology. DG Research, Luxembourg: European Commission

  • Rosenberg, N. (1982). Inside the black box: Technology and economics. Cambridge and New York: Cambridge University Press.

    Google Scholar 

  • Royal Society. (2004). Nanoscience and nanotechnologies: Opportunities and uncertainties. London: Royal Society and Royal Academy of Engineering.

    Google Scholar 

  • Schmidt, K. (2006). Nanofrontiers: Visions for the future of nanotechnology. Washington, DC: Project on Emerging Nanotechnologies.

    Google Scholar 

  • Schummer, J. (2004). Multidiciplinarity, interdisciplinarity, and patterns of research collaboration in nanoscience and nanotechnology. Scientometrics, 59, 425–465.

    Article  Google Scholar 

  • Scitech Strategies Inc. (2008). Maps of science. http://mapofscience.com. Accessed December 28, 2008.

  • Shapira, P., & Youtie, J. (2010). United States. In D. Guston & J. G. Golson (Eds.), Encyclopedia of nanotechnology and society. New York: Sage Publications.

    Google Scholar 

  • Sheetz, T., Vidal, J., Pearson, T. D., & Lozano, K. (2005). Nanotechnology: Awareness and societal concerns. Technology in Society, 27(3), 329–345.

    Article  Google Scholar 

  • Siegel, R. W., Hu, E., & Roco, M. C. (1999). Nanostructure science and technology: A worldwide study. WTEC panel report. Washington, DC: National Science and Technology Council.

    Google Scholar 

  • Slovic, P. (1993). Perceived risk, trust, and democracy. Risk Analysis, 13(6), 675–682.

    Article  Google Scholar 

  • Smalley, R. E. (2001). Of chemistry, love and nanobots. Scientific America, 285(3), 76–77.

    Article  Google Scholar 

  • Tijssen, R. J. W. (2004). Science-technology connections and Interactions. In H. F. Moed, W. Glänzel, & U. Schmoch (Eds.), Handbook of quantitative science and technology research: The use of publication and patent statistics in studies of S&T systems (pp. 695–715). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Uldrich, J. (with Newbury, D.) (2003). The next big thing is really small: How nanotechnology will change the future of your business. Crown Business, New York.

  • Whiteside, G. (2001). The once and future nanomachine. Scientific America, 285(3), 78–83.

    Article  Google Scholar 

  • Wilsdon, J., & Willis, R. (2004). See through science: Why public engagement needs to move upstream. London: Demos.

    Google Scholar 

  • Wood, S., Jones, R., & Geldart, A. (2003). The social and economic challenges of nanotechnology. London: Economic and Social Research Council.

    Google Scholar 

  • Youtie, J., Iacopetta, M., & Graham, S. (2008a). Assessing the nature of nanotechnology: can we uncover an emerging general purpose technology? Journal of Technology Transfer, 33, 315–329.

    Article  Google Scholar 

  • Youtie, J., Shapira, P., & Porter, A. L. (2008b). Nanotechnology publications and citations by leading countries and blocs. Journal of Nanoparticle Research, 10(6), 981–986.

    Article  Google Scholar 

  • Zucker, L. G., Darby, M. R., & Brewer, M. B. (1998). Intellectual human capital and the birth of U.S. biotechnology enterprises. American Economic Review, 88(1), 290–306.

    Google Scholar 

Download references

Acknowledgments

This research was partly supported by the Center for Nanotechnology in Society at Arizona State University (National Science Foundation Award 0531194), the National Partnership for Managing Upstream Innovation: The Case of Nanoscience and Technology (North Carolina State University, National Science Foundation Award EEC-0438684), and the Representations of Active Nanostructures project (NSF SES-0708413). The findings and observations contained in this article are those of the authors and do not necessarily reflect the views of the National Science Foundation. Significant assistance in database development was provided by Ashley Rivera, Jue Wang, and Heming Zhang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Shapira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shapira, P., Youtie, J. & Porter, A.L. The emergence of social science research on nanotechnology. Scientometrics 85, 595–611 (2010). https://doi.org/10.1007/s11192-010-0204-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-010-0204-x

Keywords

Navigation