Skip to main content
Log in

Neural network modeling search for multitarget RAGE inhibitors with different target activity spectra

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Five scaffolds (phenoxybenzene, benzofuran, azolobenzimidazole, oxoindole, and uracil), which are promising as sources of compounds with high RAGE inhibitory activity, were found in silico among ten structurally different classes of the synthesized substances using a multitarget neural network model of the dependence of the RAGE inhibitory activity on the affinity of the compounds to the target proteins of the RAGE—NF-κB signal pathway. The derivatives of these scaffolds are characterized by the predominantly post-receptor effect and manifest different target activity spectra to signal kinases of the RAGE—NF-κB chain. The revealed multitarget compounds were recommended for experimental investigation in order to determine their RAGE inhibitory activity. They can form a basis for the development of new promising drugs for the treatment of complications after diabetes mellitus and Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. A. Ansari, Z. Rasheed, Biochemistry (Moscow), Suppl. Ser. B: Biomed. Chem., 2009, 3, No. 4, 335.

    Article  Google Scholar 

  2. KEGG: AGE-RAGE Signaling Pathway in Diabetic Complications — Homo Sapiens, 2019; https://www.genome.jp/kegg-bin/show_pathway?map=hsa04933&show_description=show.

  3. J. C. Tobon-Velasco, E. Cuevas, M. A. Torres-Ramos, CNS Neurol. Disord. Drug Targets, 2014, 13, 1615.

    Article  CAS  Google Scholar 

  4. S. F. Yan, R. Ramasamy, A. M. Schmidt, Nat. Clin. Pract. Endocrinol. Metab., 2008, 4, № 5, 285.

    Article  CAS  Google Scholar 

  5. World Health Organization: Diabetes, 2019; https://www.who.int/news-room/fact-sheets/detail/diabetes.

  6. World Health Organization: Dementia, 2019; https://www.who.int/news-room/fact-sheets/detail/dementia.

  7. P. M. Vassiliev, A. A. Spasov, L. R. Yanalieva, A. N. Kochetkov, V. V. Vorfolomeyeva, V. G. Klochkov, D. T. Appazova, Biochemistry (Moscow), Suppl. Ser. B: Biomed. Chem., 2019, 13, No. 3, 256.

    Article  Google Scholar 

  8. A. A. Spasov, Yu. V. Popov, V. S. Lobasenko, T. K. Korchagina, P. M. Vassiliev, V. A. Kuznetsova, A. A. Brigadirova, A. I. Rashchenko, D. A. Babkov, A. N. Kochetkov, A. I. Kovaleva, O. S. Efremova, Russ. J. Bioorg. Chem., 2017, 43, No. 2, 163.

    Article  CAS  Google Scholar 

  9. A. A. Spasov, D. A. Babkov, T. Y. Prokhorova, E. A. Sturova, D. R. Muleeva, M. R. Demidov, D. V. Osipov, V. A. Osyanin, Y. N. Klimochkin, Chem. Biol. Drug Des., 2017, 90, 1184.

    Article  CAS  Google Scholar 

  10. A. A. Spasov, D. A. Babkov, D. V. Osipov, V. G. Klochkov, D. R. Prilepskay, M. R. Demidov, V. A. Osyanin, Yu. N. Klimochkin, Bioorg. Med. Chem. Lett., 2019, 29, No. 1, 119.

    Article  CAS  Google Scholar 

  11. A. A. Spasov, O. N. Zhukovskaya, A. A. Brigadirova, H. S. A. Abbas, V. A. Anisimova, V. A. Sysoeva, A. I. Rashchenko, R. A. Litvinov, O. Yu. Mayka, D. A. Babkov, A. S. Morkovnik, Russ. Chem. Bull., 2017, 66, 1905.

    Article  CAS  Google Scholar 

  12. D. A. Babkov, O. N. Zhukowskaya, A. V. Borisov, V. A. Babkova, E. V. Sokolova, A. A. Brigadirova, R. A. Litvinov, A. A. Kolodina, A. S. Morkovnik, V. S. Sochnev, G. S. Borodkin, A. A. Spasov, Bioorg. Med. Chem. Lett., 2019, 29, 2443.

    Article  CAS  Google Scholar 

  13. N. A. Lozinskaya, D. A. Babkov, E. V. Zaryanova, E. N. Bezsonova, A. M. Efremov, M. D. Tsymlyakov, L. V. Anikina, O. Y. Zakharyascheva, A. V. Borisov, V. N. Perfilova, I. N. Tyurenkov, M. V. Proskurnina, A. A. Spasov, Bioorg. Med. Chem., 2019, 27, 1804.

    Article  CAS  Google Scholar 

  14. A. A. Spasov, F. A. Khaliullin, D. A. Babkov, G. A. Timirkhanova, V. A. Kuznetsova, L. V. Naumenko, D. R. Muleeva, O. Yu. Maika, T. Yu. Prokhorova, E. A. Sturova, Pharm. Chem. J., 2017, 51, No. 7, 533.

    Article  CAS  Google Scholar 

  15. V. L. Rusinov, I. M. Sapozhnikova, A. M. Bliznik, O. N. Chupakhin, V. N. Charushin, A. A. Spasov, P. M. Vassiliev, V. A. Kuznetsova, A. I. Rashchenko, D. A. Babkov, Arch. Pharm. (Weinheim), 2017, 350, e1600361.

    Article  Google Scholar 

  16. A. A. Spasov, D. A. Babkov, V. A. Sysoeva, R. A. Litvinov, D. D. Shamshina, E. N. Ulomsky, K. V. Savateev, V. V. Fedotov, P. A. Slepukhin, O. N. Chupakhin, V. N. Charushin, V. L. Rusinov, Arch. Pharm. (Weinheim), 2017, 350, e1700226.

    Article  Google Scholar 

  17. A. A. Spasov, A. K. Brel, R. A. Litvinov, S. V. Lisina, A. F. Kucheryavenko, Yu. N. Budaeva, O. A. Salaznikova, A. I. Rashchenko, D. D. Shamshina, V. V. Batrakov, A. V. Ivanov, Russ. J. Bioorg. Chem., 2018, 44, No. 6, 769.

    Article  CAS  Google Scholar 

  18. M. S. Dzyurkevich, D. A. Babkov, N. V. Shtyrlin, O. Y. Mayka, A. G. Iksanova, P. M. Vassiliev, K. V. Balakin, A. A. Spasov, V. V. Tarasov, G. Barreto, Y. G. Shtyrlin, G. Aliev, Sci. Rep., 2017, 7, 16072.

    Article  Google Scholar 

  19. ChemAxon: Marvin, 2019; https://chemaxon.com/products/marvin.

  20. MOPAC, 2019, http://openmopac.net.

  21. UniProt: UniProtKB, 2019; https://www.uniprot.org/uniprot/.

  22. Statistica, 2007; http://www.statsoft.com/Products/STATISTICA-Features.

  23. R. I. Ishmetova, D. A. Babkov, A. F. Kucheryavenko, V. A. Babkova, V. S. Sirotenko, N. K. Ignatenko, S. G. Tolschina, P. M. Vassiliev, G. L. Rusinov, A. A. Spasov, Russ. Chem. Bull., 2020, 69, 768.

    Article  CAS  Google Scholar 

  24. A. A. Spasov, O. N. Zhukowskaya, D. A. Babkov, A. A. Brigadirova, V. A. Babkova, A. S. Morkovnik, R. A. Litvinov, E. V. Sokolova, Russ. Chem. Bull., 2020, 69, 774.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Vassiliev.

Additional information

This work was financially supported by the Russian Foundation for Basic Research (Project No. 18-015-00499).

This work does not involve human participants and animal subjects.

The authors declare that there is no conflict of interest.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 562–566, March, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vassiliev, P.M., Spasov, A.A., Babkov, D.A. et al. Neural network modeling search for multitarget RAGE inhibitors with different target activity spectra. Russ Chem Bull 70, 562–566 (2021). https://doi.org/10.1007/s11172-021-3125-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-021-3125-3

Key words

Navigation