Skip to main content
Log in

Relationship between the cluster theory of liquids and the Frenkel—Andrade viscosity model

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Based on the reference data on the dynamic viscosity of the melts of halides of the elements of Groups 1 and 11, the approximating dependences in the form of cluster-associate and Frenkel’s models were constructed at various temperatures. In the framework of the cluster-associate viscosity model, which is being developed by the authors, entities in the form of virtual clusters and associates determine the melt viscosity and serve as the flow units to that the energy of fluid motion is applied. The Frenkel’s model allows us to estimate the activation energy of fluidity. Calculations show that there is a linear correlation between this energy and the cluster association degree obtained in the framework of the cluster-associate model, and the proportionality coefficient has the meaning of the activation energy per a cluster. This energy does not exceed the van der Waals energy of an unsaturated intermolecular bond characterizing the interaction of particles in a liquid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. I. V. Melikhov, Fiziko-khimicheskaya evolutsiya tverdogo veshchestva [Physicochemical Evolution of the Solid], BINOM. Laboratoriya Znanii, Moscow, 2006, 309 pp. (in Russian).

    Google Scholar 

  2. G. N. Elansky, D. G. Elansky, Stroenie i svoistva metallicheskikh rasplavov [The Structure and Properties of Metal Melts], Izd-vo MGVMI, Moscow, 2006, 228 pp. (in Russian).

    Google Scholar 

  3. B. A. Baum, Metallicheskie zhidkosti [Metal Fluids], Nauka, Moscow, 1979, 120 pp. (in Russian).

    Google Scholar 

  4. B. A. Baum, G. V. Tyagunov, E. E. Baryshev, E. S. Tsepelev, Fundamentalnye issledovaniya fiziko-khimii metallicheskikh rasplavov [Basic Research of the Physical Chemistry of Metal Melts], Akademkniga, Moscow, 2002, 469 pp. (in Russian).

    Google Scholar 

  5. I. V. Gavrilin, Plavlenie i kristallizatsiya metallov i splavov [Melting and Crystallization of Metals and Alloys], Izd-vo VGU, Vladimir, 2000, 260 pp. (in Russian).

    Google Scholar 

  6. A. M. Zborschik, Teoreticheskie osnovy metallurgicheskogo proizvodstva [The Theoretical Foundations of Metallurgical Production], Izd-vo DonNTU, Donetsk, 2008, 189 pp. (in Russian).

    Google Scholar 

  7. Fundamental’nye issledovaniya fizikokhimii metallicheskikh rasplavov [Basic Research of the Physical Chemistry of Metal Melts], Ed N. P. Lyakishev, Akademkniga, Moscow, 2002, 467 pp. (in Russian).

    Google Scholar 

  8. A. A. Cherepakhin, I. I. Koltunov, V. A. Kuznetsov, Materialovedenie [Materials Science], Knorus, Moscow, 2009, 235 pp. (in Russian).

    Google Scholar 

  9. A. Maksimov, Novaya interpretatsiya v termodinamike [New Interpretation in Thermodynamics], Lambert, Academic Publishing, Saarbrucken, 2014, 76 pp. (in Russian).

    Google Scholar 

  10. A. D. Zimon, Fizicheskaya khimiya [Physical Chemistry], Krasand, Moscow, 2015, 318 pp. (in Russian).

    Google Scholar 

  11. V. V. Budanov, A. I. Maksimov, Khimicheskaya termodinamika [Chemical Thermodynamics], Lan’, Saint Petersburg, 2016, 320 pp. (in Russian).

    Google Scholar 

  12. Yu. S. Efremov, Statisticheskaya fizika i termodinamika [Statistical Physics and Thermodynamics], Yurait, Moscow, 2017, 209 pp. (in Russian).

    Google Scholar 

  13. D. P. Zarubin, Fizicheskaya khimiya [Physical Chemistry], Infra-M, Moscow, 2017, 476 pp. (in Russian).

    Google Scholar 

  14. P. Schmidt, R. Schafer, Methods in Physical Chemistry, John Willey & Sons Limited, Manchester, 2017, 370 pp.

    Google Scholar 

  15. P. W. Atkins, J. de Paula, Elements of Physical Chemistry, W. H. Freeman and Company, Oxford, 2016, 656 pp.

    Google Scholar 

  16. T. Yazachev, Physical Chemistry, Lambert, Academic Publishing, Saarbrucken, 2014, 148 pp.

    Google Scholar 

  17. P. M. S. Monk, Physical Chemistry: Understanding our Chemical World, John Wiley & Sons Ltd, Manchester, 2004, 619 pp.

    Google Scholar 

  18. D. W. Rogers, Concise Physical Chemistry, John Wiley & Sons, Brooklyn, 2013, 405 pp.

    Google Scholar 

  19. M. A. Leontovich, Vvedenie v termodinamiku. Statisticheskaya fizika [Introduction to Thermodynamics. Statistical Physics], Vysshaya Shkola, Moscow, 1983, p. 211 (in Russian).

    Google Scholar 

  20. V. P. Malyshev, A. M. Makasheva, Yu. S. Krasikova, Vestn. Karagandinskogo Un-ta, Ser. Fizika [Vestn. Karaganda Univ., Ser. Physics], 2018, 3, 42 (in Russian).

    Google Scholar 

  21. V. P. Malyshev, N. S. Bekturganov, A. M. Turdukozhaeva, Vyazkost’, tekuchest’ i plotnost’ veschestv kak mera ikh khaotizatsii [Viscosity, Fluidity, and Density of Substances as a Measure of their Randomization], Nauchnyi Mir, Moscow, 2012, 288 pp. (in Russian).

    Google Scholar 

  22. V. P. Malyshev, M. Zh. Tolymbekov, A. M. Turdukozhaeva, A. S. Kazhikenova, A. M. Akulov, Rasplavy [Melts], 2010, 6, 43 (in Russian).

    Google Scholar 

  23. V. P. Malyshev, A. M. Turdukozhaeva, Rasplavy [Melts], 2011, 6, 72 (in Russian).

    Google Scholar 

  24. V. P. Malyshev, A. M. Makasheva, Tsvetnye Metally [Non-Ferrous Metals], 2018, 10, 6 (in Russian).

    Article  Google Scholar 

  25. R. E. Dickerson, H. B. Gray, G. P. Haight, Jr., Chemical Principles, the Benjamin/Cummings Publishing Co., Inc., California, 1979, 540 pp.

    Google Scholar 

  26. V. A. Rabinovitch, Z. Ya. Khazin, Kratkii khimicheskii spravochnik [Brief Chemical Reference Book], Khimiya, Leningrad, 1978, 316 pp. (in Russian).

    Google Scholar 

  27. A. Ya. Malkin, S. A. Patlazhan, V. G. Kulichikhin, Russ. Chem. Rev., 2019, 88, 319.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Malyshev.

Additional information

Based on the materials of the XXI Mendeleev Congress on General and Applied Chemistry (September 9–13, 2019, St. Petersburg, Russia).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1296–1305, July, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malyshev, V.P., Makasheva, A.M. Relationship between the cluster theory of liquids and the Frenkel—Andrade viscosity model. Russ Chem Bull 69, 1296–1305 (2020). https://doi.org/10.1007/s11172-020-2901-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-020-2901-9

Key words

Navigation