Skip to main content

Advertisement

Log in

Design of peptide–dendrimer conjugates with tumor homing and antitumor effects

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Development of drug delivery systems for cancer therapy is a crucial issue. Previously, some peptides were designed as tumor homing cell-penetrating peptides with antitumor activities. In this study, dual function dendrimers with tumor targeting activities and antitumor effects were designed using the tumor targeting CPP44 peptide for acute myelogenous leukemia (AML) and the antitumor p16INK4a peptide. Two types of peptide–dendrimer conjugates were synthesized. One was a CPP44-linked p16INK4a peptide-conjugated dendrimer (tandem linked dendrimer) and the other was a dendrimer conjugated with separate CPP44 and p16INK4a peptides (parallel linked dendrimer). In addition, a peptide cathepsin B substrate was linked to the antitumor p16INK4a peptide to release it from the carriers. These peptide–dendrimer conjugates produced more effective antitumor effects than a CPP44-linked p16INK4a peptide. The parallel linked dendrimer showed less association with AML cells than the tandem linked dendrimer, but had greater antitumor effects. This suggested that both cellular uptake and antitumor peptide cleavage affected the antitumor activities of dual functional peptide-conjugated dendrimers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L.A. Torre, F. Bray, R.L. Siegel, J. Ferlay, J. Lortet-Tieulent, A. Jemal, CA Cancer J. Clin. 65, 87 (2015)

    Article  PubMed  Google Scholar 

  2. N.E. Hynes, H.A. Lane, Nat. Rev. Cancer 5, 341 (2005)

    Article  CAS  PubMed  Google Scholar 

  3. A.I. Minchinton, I.F. Tannock, Nat. Rev. Cancer 6, 583 (2006)

    Article  CAS  PubMed  Google Scholar 

  4. K. Fosgerau, T. Hoffmann, Drug Discov. Today 20, 122 (2015)

    Article  CAS  PubMed  Google Scholar 

  5. E. Kondo, T. Tanaka, T. Miyake, T. Ichikawa, M. Hirai, M. Adachi, K. Yoshikawa, K. Ichimura, N. Ohara, A. Moriwaki, I. Date, R. Ueda, T. Yoshino, Mol. Cancer Ther. 7, 1461 (2008)

    Article  CAS  PubMed  Google Scholar 

  6. E. Kondo, M. Seto, K. Yoshikawa, T. Yoshino, Mol. Cancer Ther. 3, 1623 (2004)

    CAS  PubMed  Google Scholar 

  7. K. Saito, N. Takigawa, N. Ohtani, H. Iioka, Y. Tomita, R. Ueda, J. Fukuoka, K. Kuwahara, E. Ichihara, K. Kiura, E. Kondo, Mol. Cancer Ther. 12, 1616 (2013)

    Article  CAS  PubMed  Google Scholar 

  8. J.P. Richard, K. Melikov, E. Vives, C. Ramos, B. Verbeure, M.J. Gait, L.V. Chernomordik, B. Lebleu, J. Biol. Chem. 278, 585 (2003)

    Article  CAS  PubMed  Google Scholar 

  9. B. Gupta, T.S. Levchenko, V.P. Torchilin, Adv. Drug Deliv. Rev. 57, 637 (2005)

    Article  CAS  PubMed  Google Scholar 

  10. E. Kondo, K. Saito, Y. Tashiro, K. Kamide, S. Uno, T. Furuya, M. Mashita, K. Nakajima, T. Tsumuraya, N. Kobayashi, M. Tanimoto, M. Matsushita, Nat. Commun. 3, 951 (2012)

    Article  CAS  PubMed  Google Scholar 

  11. K. Riehemann, S.W. Scheider, T.A. Luger, B. Godin, M. Ferrari, H. Fuchs, Angew. Chem. Int. Ed. 48, 872 (2009)

    Article  CAS  Google Scholar 

  12. V. Wagner, A. Dullaart, A.-K. Bock, A. Zweck, Nat. Biotechnol. 24, 1211 (2006)

    Article  CAS  PubMed  Google Scholar 

  13. S. Svenson, D.A. Tomalia, Adv. Drug Deliv. Rev. 57, 2106 (2005)

    Article  CAS  PubMed  Google Scholar 

  14. C.C. Lee, J.A. MacKay, J.M.J. Fréchet, F.C. Szoka, Nat. Biotechnol. 23, 1517 (2005)

    Article  CAS  PubMed  Google Scholar 

  15. D. Astruc, E. Boisselier, C. Ornelas, Chem. Rev. 110, 1857 (2010)

    Article  CAS  PubMed  Google Scholar 

  16. J. Khandare, M. Calderon, N.M. Dagia, R. Haag, Chem. Soc. Rev. 41, 2824 (2012)

    Article  CAS  PubMed  Google Scholar 

  17. R.M. Kannan, E. Nance, S. Kannan, D.A. Tomalia, J. Intern. Med. 276, 579 (2014)

    Article  CAS  PubMed  Google Scholar 

  18. C. Palermo, J.A. Joyce, Trends Pharmacol. Sci. 29, 22 (2008)

    Article  CAS  PubMed  Google Scholar 

  19. R. de la Rica, D. Aili, M.M. Stevens, Adv. Drug Deliv. Rev. 64, 967 (2012)

    Article  CAS  PubMed  Google Scholar 

  20. K. Saito, H. Iioka, C. Kojima, M. Ogawa, E. Kondo, Cancer Sci. 107, 1290 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. M. Van Engeland, L.J. Nieland, F.C. Ramaekers, B. Schutte, C.P. Reutelingsperger, Cytometry 31, 1 (1998)

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This manuscript was supported by a grant-in-aid from the Japan Society for the Promotion of Science (JSPS) for Scientific Research (C) (No. 26410227) and Scientific Research (B) (No. 25290062).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chie Kojima or Eisaku Kondo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 151 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kojima, C., Saito, K. & Kondo, E. Design of peptide–dendrimer conjugates with tumor homing and antitumor effects. Res Chem Intermed 44, 4685–4695 (2018). https://doi.org/10.1007/s11164-018-3280-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-018-3280-9

Keywords

Navigation