Skip to main content
Log in

A novel detector using a fluorescent sensor array and discrimination of pesticides

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

A novel, simple, and rapid detector using a fluorescent sensor array for discrimination and quantification of different concentrations (ppb level) of pesticides was proposed in this paper. Employing porphyrin, porphyrin derivatives, and chemically responsive dyes as the sensing elements, the developed sensor array based on a cross-responsive mechanism showed a unique pattern of fluorescence changes upon the reaction that lasted just 10 min. The eigenvalues from raw fluorescence spectra were analyzed via a pattern recognition algorithm, including hierarchical cluster analysis (HCA), principal component analysis (PCA), and back-propagation neural network (BPNN). The results showed that HCA, which were used to assess the feasibility and effectiveness of discrimination of the fluorescent sensor array, revealed a distinct separation between different pesticides. PCA and BPNN were used for automatically predicting the concentration of pesticides, and the recovery was 91.29–109.81 % while the lowest relative standard deviation was up to 3.12 %. It indicates a detector based on the fluorescent sensor array is a rapid and feasible sensing platform for the discrimination and quantitative analysis of pesticides, and also shows the possibilities in the related fields of pesticides identification and detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C.S. Pundir, N. Chauhan, Anal. Biochem. 429, 1 (2012)

    Article  Google Scholar 

  2. J. Gong, X. Miao, T. Zhou, L. Zhang, Talanta 85, 3 (2011)

    Google Scholar 

  3. R. Zhu, L. Yan, L. Guo-Hui, Y. Yong-Liang, W. Xiao-Chun, H. Yi, G. Ran, Asian J. Chem. 26, 10 (2014)

    CAS  Google Scholar 

  4. M. Asensio-Ramos, J. Hernández-Borges, G. González-Hernández, M.Á. Rodríguez-Delgado, Electrophoresis 33, 14 (2012)

    Article  Google Scholar 

  5. A. Moral, M.D. Sicilia, S. Rubio, Anal. Chim. Acta 650, 2 (2009)

    Article  Google Scholar 

  6. C.J. Sinclair, A.B. Boxall, S.A. Parsons, M.R. Thomas, Environ. Sci. Technol. 40, 23 (2006)

    Google Scholar 

  7. M. Del Pozo, M. Alonso, L. Hernandez, C. Quintana, Electroanal. 23, 1 (2011)

    Article  Google Scholar 

  8. A. Nougadère, V. Sirot, A. Kadar, A. Fastier, E. Truchot, C. Vergnet, F. Hommet, J. Baylé, P. Gros, J.-C. Leblanc, Environ. Int. 45, (2012)

  9. F. Mazzei, F. Botrè, S. Montilla, R. Pilloton, E. Podestà, C. Botrè, J. Electroanal. Chem. 574, 1 (2004)

    Article  Google Scholar 

  10. N. Jones, Nat. Rev. Neurol. 6, 7 (2010)

    Article  Google Scholar 

  11. J.R. Richardson, S.L. Shalat, B. Brian, W. Bozena, O.S. Padraig, D.A. Ramon, R. Joan, D.C. German, Arch. Neurol. 66, 7 (2009)

    Article  Google Scholar 

  12. C. Cortada, L.C. dos Reis, L. Vidal, J. Llorc, A. Canals, Talanta 120, (2014)

  13. A.-Y. Ko, M.M. Rahman, A.A. El-Aty, J. Jang, J.-H. Park, S.-K. Cho, J.-H. Shim, Food Chem. 148, (2014)

  14. J. Vichapong, R. Burakham, S. Srijaranai, Talanta 117, (2013)

  15. Q. Li, P. Wang, R. Chen, W. Li, Y.-J. Wu, Environ. Technol. 35, 5 (2014)

    Google Scholar 

  16. K. Kanagaraj, A. Affrose, S. Sivakolunthu, K. Pitchumani, Biosens. Bioelectron. 35, 1 (2012)

    Article  Google Scholar 

  17. V. Zare-Shahabadi, F. Abbasitabar, M. Akhond, M. Shamsipour, J. Brazil. Chem. Soc. 24, 10 (2013)

    Google Scholar 

  18. S. Mitić, V. Živanović, G. Miletić, Z. Grahovac, E. Pecev, J. Anal. Chem. 67, 3 (2012)

    Google Scholar 

  19. J. Bao, C. Hou, M. Chen, J. Li, D. Huo, M. Yang, X. Luo, Y. Lei, J. Agric. Food. Chem. 63, (2015)

  20. R.R. Dutta, P. Puzari, Biosens. Bioelectron. 52, (2014)

  21. Q. Xu, S. Du, H. Li, X.Y. Hu, Microchim. Acta 173, 3–4 (2011)

    Article  Google Scholar 

  22. G.-H. Yao, R.-P. Liang, C.-F. Huang, Y. Wang, J.-D. Qiu, Anal. Chem. 85, 24 (2013)

    Google Scholar 

  23. J. Sun, L. Guo, Y. Bao, J. Xie, Biosens. Bioelectron. 28, 1 (2011)

    Article  Google Scholar 

  24. Y. Li, Z. Cui, D. Li, H. Li, Sensor. Actuat. B-Chem. 155, 2 (2011)

    Google Scholar 

  25. A. Siriviriyanun, T. Imae, N. Nagatani, Anal. Biochem. 443, 2 (2013)

    Article  Google Scholar 

  26. E. Valera, R. García-Febrero, I. Pividori, F. Sánchez-Baeza, M.-P. Marco, Sensor. Actuat. B-Chem. 194, (2014)

  27. N.A. Rakow, K.S. Suslick, Nature 406, 6797 (2000)

    Article  Google Scholar 

  28. C. Hou, J. Lei, D. Huo, K. Song, J. Li, X. Luo, M. Yang, H. Fa, Anal. Lett. 46, 13 (2013)

    Google Scholar 

  29. Y. Wu, D. Huo, C. Hou, H. Fa, M. Yang, X. Luo, Chem. Res. Chinese U. 30, 4 (2014)

    Article  Google Scholar 

  30. T. Mayr, C. Igel, G. Liebsch, I. Klimant, O.S. Wolfbeis, Anal. Chem. 75, 17 (2003)

    Article  Google Scholar 

  31. A. Thete, T. Henkel, R. Göckeritz, M. Endlich, J. Köhler, G. Gross, Anal. Chim. Acta 633, 1 (2009)

    Article  Google Scholar 

  32. X. Yan, H. Li, X. Han, X. Su, Biosens. Bioelectron. 74, (2015)

  33. Y. Yi, G. Zhu, C. Liu, Y. Huang, Y. Zhang, H. Li, J. Zhao, S. Yao, Anal. Chem. 85, 23 (2013)

    Article  Google Scholar 

  34. X. Wang, J. Yu, Q. Kang, D. Shen, J. Li, L. Chen, Biosens. Bioelectron. 77, (2016)

  35. E.J. Song, G.J. Park, J.J. Lee, S. Lee, I. Noh, Y. Kim, S.-J. Kim, C. Kim, R.G. Harrison, Actuat. B-Chem. 213, (2015)

  36. C. Hou, J. Dong, G. Zhang, Y. Lei, M. Yang, Y. Zhang, Z. Liu, S. Zhang, D. Huo, Biosens. Bioelectron. 26, 10 (2011)

    Google Scholar 

  37. H. Fa, W. Yin, C. Hou, W. Zheng, D. Wang, X. Wang, J. Coord. Chem. 62, 7 (2009)

    Article  Google Scholar 

  38. K.S. Suslick, N.A. Rakow, A. Sen, Tetrahedron 60, 49 (2004)

    Article  Google Scholar 

  39. I. Shinsuke, L. Jan, V.R. Wim, I. Daisuke, M. Kosuke, J.P. Hill, A. Katsuhiko, Phys. Chem. Chem. Phys. 16, 21 (2014)

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from NSFC (31171684, 31101284), Key Technologies R&D Program of China (2014BAD07B02), China Postdoctoral Science Foundation Funded Project (2015M582522), Chongqing Postdoctoral Science Research Special Funded Project, China (Xm2015051), the Fundamental Research Funds for the Central Universities (106112015CDJRC121210), Liquor making biology technology and application of Key Laboratory Program of Sichuan Province, China (NJ2014-03), Chongqing Graduate Student Research Innovation Project, China (CYB15026) and the sharing fund of Chongqing university’s large equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changjun Hou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, J., Hou, C., Huo, D. et al. A novel detector using a fluorescent sensor array and discrimination of pesticides. Res Chem Intermed 42, 7359–7374 (2016). https://doi.org/10.1007/s11164-016-2541-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-016-2541-8

Keywords

Navigation