Skip to main content
Log in

Remove mechanisms of sulfamethazine by goethite: the contributions of pH and ionic strength

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Sulfamethazine (SMT) as an ionic compound can enter the soil environment via the application of livestock wastes in agricultural fields and via the abuse of pharmaceuticals. Goethite as one of the most important iron oxides in soil might interact with SMT and influence its environmental behavior and bioavailability in soil. In this study, the sorption properties of SMT on goethite under different solution conditions were investigated. The sorption isotherm exhibited a significant nonlinear shape and desorption hysteresis, while the data could be fitted well by the Freundlich model with the correlation coefficient R 2 = 0.991. Sorption capacity initially increased and then decreased as pH values increased from 3 to 13, while the strongest uptake occurred in neutral conditions. The sorption increased slightly and then kept relatively constant as the ionic strength of the solution increased. The results indicated that the sorption mechanism would be altered in different solution conditions. In acidic and neutral conditions, the π–π electron donor–acceptor interactions and outer- and inner-sphere complexions might be the dominating sorption mechanisms. The sorption in alkali conditions might be dominated by electrostatic interactions between SMT and goethite. It should be noted that the heterogeneous sorption affinity of SMT on goethite under various solution conditions will influence its environmental fate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W. Yang et al., Investigation into adsorption mechanisms of sulfonamides onto porous adsorbents. J. Colloid Interface Sci. 362(2), 503–509 (2011)

    Article  CAS  Google Scholar 

  2. S. Thiele-Bruhn, Pharmaceutical antibiotic compounds in soils—a review. J. Plant Nutr. Soil Sci-Z. Pflanz. Bodenk. 166(2), 145–167 (2003)

    Article  CAS  Google Scholar 

  3. S. Thiele-Bruhn, I.C. Beck, Effects of sulfonamide and tetracycline antibiotics on soil microbial activity and microbial biomass. Chemosphere 59(4), 457–465 (2005)

    Article  CAS  Google Scholar 

  4. V. Leone et al., Sorption of non-ionic organic pollutants onto a humic acids-zeolitic tuff adduct: thermodynamic aspects. Chemosphere 95, 75–80 (2014)

    Article  CAS  Google Scholar 

  5. X. Guo et al., The influences of pH and ionic strength on the sorption of tylosin on goethite. Environ. Sci. Pollut. Res. 21(4), 2572–2580 (2014)

    Article  CAS  Google Scholar 

  6. Q. Zhang et al., Sorption of tylosin on clay minerals. Chemosphere 93(9), 2180–2186 (2013)

    Article  CAS  Google Scholar 

  7. X. Guo et al., Sorption and photodegradation of tylosin and sulfamethazine by humic acid-coated goethite. RSC Adv. 5(122), 100464–100471 (2015)

    Article  CAS  Google Scholar 

  8. Y. Zhao et al., Adsorption of tetracycline onto goethite in the presence of metal cations and humic substances. J. Colloid Interface Sci. 361(1), 247–251 (2011)

    Article  CAS  Google Scholar 

  9. T. Tanghe, W. Verstraete, Adsorption of nonylphenol onto granular activated carbon. Water Air Soil Pollut. 131(1–4), 61–72 (2001)

    Article  CAS  Google Scholar 

  10. W. Lertpaitoonpan, S.K. Ong, T.B. Moorman, Effect of organic carbon and pH on soil sorption of sulfamethazine. Chemosphere 76(4), 558–564 (2009)

    Article  CAS  Google Scholar 

  11. A. Bialk-Bielinska et al., Sulfadimethoxine and sulfaguanidine: their sorption potential on natural soils. Chemosphere 86(10), 1059–1065 (2012)

    Article  CAS  Google Scholar 

  12. X.-R. Xu, X.-Y. Li, Sorption and desorption of antibiotic tetracycline on marine sediments. Chemosphere 78(4), 430–436 (2010)

    Article  CAS  Google Scholar 

  13. J. Heise et al., Chemical and biological characterization of non-extractable sulfonamide residues in soil. Chemosphere 65(11), 2352–2357 (2006)

    Article  CAS  Google Scholar 

  14. J. Gao, J.A. Pedersen, Sorption of sulfonamide antimicrobial agents to humic acid-clay complexes. J. Environ. Qual. 39(1), 228–235 (2010)

    Article  CAS  Google Scholar 

  15. S. Thiele-Bruhn et al., Sorption of sulfonamide pharmaceutical antibiotics on whole soils and particle-size fractions. J. Environ. Qual. 33(4), 1331–1342 (2004)

    Article  CAS  Google Scholar 

  16. M. Burkhardt et al., Surface runoff and transport of sulfonamide antibiotics and tracers on manured grassland. J. Environ. Qual. 34(4), 1363–1371 (2005)

    Article  CAS  Google Scholar 

  17. K. Stoob et al., Dissipation and transport of veterinary sulfonamide antibiotics after manure application to grassland in a small catchment. Environ. Sci. Technol. 41(21), 7349–7355 (2007)

    Article  CAS  Google Scholar 

  18. M. Brigante, G. Zanini, M. Avena, Effect of humic acids on the adsorption of paraquat by goethite. J. Hazard. Mater. 184(1–3), 241–247 (2010)

    Article  CAS  Google Scholar 

  19. G. Mustafa, R.S. Kookana, B. Singh, Desorption of cadmium from goethite: effects of pH, temperature and aging. Chemosphere 64(5), 856–865 (2006)

    Article  CAS  Google Scholar 

  20. B. Wang et al., Occurrence, distribution, and sources of six phenolic endocrine disrupting chemicals in the 22 river estuaries around Dianchi Lake in China. Environ. Sci. Pollut. Res. Int. 20(5), 3185–3194 (2013)

    Article  CAS  Google Scholar 

  21. S. Thiele, Adsorption of the antibiotic pharmaceutical compound sulfapyridine by a long-term differently fertilized loess Chernozem. J. Plant Nutr. Soil Sci. 163(6), 589–594 (2000)

    Article  CAS  Google Scholar 

  22. J. Tolls, Sorption of veterinary pharmaceuticals in soils: a review. Environ. Sci. Technol. 35(17), 3397–3406 (2001)

    Article  CAS  Google Scholar 

  23. Z. Dueresova et al., Rhizofiltration potential of Arundo donax for cadmium and zinc removal from contaminated wastewater. Chem. Pap. 68(11), 1452–1462 (2014)

    Google Scholar 

  24. W.J. Braida et al., Sorption hysteresis of benzene in charcoal particles. Environ. Sci. Technol. 37(2), 409–417 (2003)

    Article  CAS  Google Scholar 

  25. P.M. Gschwend, R.P. Schwarzenbach, Physical chemistry of organic compounds in the marine environment. Mar. Chem. 39(1–3), 187–207 (1992)

    Article  CAS  Google Scholar 

  26. M. Teixido et al., Speciation of the ionizable antibiotic sulfamethazine on black carbon (Biochar). Environ. Sci. Technol. 45(23), 10020–10027 (2011)

    Article  CAS  Google Scholar 

  27. S. Carda-Broch, A. Berthod, Countercurrent chromatography for the measurement of the hydrophobicity of sulfonamide amphoteric compounds. Chromatographia 59(1–2), 79–87 (2004)

    CAS  Google Scholar 

  28. W. Yang et al., Adsorption interaction of tetracyclines with porous synthetic resins. Ind. Eng. Chem. Res. 50(24), 13892–13898 (2011)

    Article  CAS  Google Scholar 

  29. J.A. Gao, J.A. Pedersen, Adsorption of sulfonamide antimicrobial agents to clay minerals. Environ. Sci. Technol. 39(24), 9509–9516 (2005)

    Article  CAS  Google Scholar 

  30. M.K. Richter et al., Cation binding of antimicrobial sulfathiazole to leonardite humic acid. Environ. Sci. Technol. 43(17), 6632–6638 (2009)

    Article  CAS  Google Scholar 

  31. S. Kumar et al., Effect of humic acid on sorption of technetium by alumina. J. Hazard. Mater. 192(3), 1040–1045 (2011)

    Article  CAS  Google Scholar 

  32. W. Wangsuo et al., Sorption-desorption of Th(IV) on attapulgite: effects of pH, ionic strength and temperature. Appl. Radiat. Isot. 65(10), 1108–1114 (2007)

    Article  Google Scholar 

  33. M. Villalobos, J.O. Leckie, Surface complexation modeling and FTIR study of carbonate adsorption to goethite. J. Colloid Interface Sci. 235(1), 15–32 (2001)

    Article  CAS  Google Scholar 

  34. Y. Zhao et al., Adsorption of tetracycline (TC) onto montmorillonite: cations and humic acid effects. Geoderma 183, 12–18 (2012)

    Article  Google Scholar 

  35. J.R. Kershaw et al., Process effects on the nature of coal liquefaction products. Fuel 59(6), 413–418 (1980)

    Article  CAS  Google Scholar 

  36. G.K. Anderson, A.K. Phipps, Hydrogen-deuterium exchange reactions catalyzed by zerovalent phosphinepalladium complexes. J. Organomet. Chem. 266(1), c15–c18 (1984)

    Article  CAS  Google Scholar 

  37. S.E. Wheeler, K.N. Houk, Substituent effects in cation/pi interactions and electrostatic potentials above the centers of substituted benzenes are due primarily to through-space effects of the substituents. J. Am. Chem. Soc. 131(9), 3126–3133 (2009)

    Article  CAS  Google Scholar 

  38. H. Wijnja, J.J. Pignatello, K. Malekani, Formation of pi-pi complexes between phenanthrene and model pi-acceptor humic subunits. J. Environ. Qual. 33(1), 265–275 (2004)

    Article  CAS  Google Scholar 

  39. L. Ji et al., Mechanisms for strong adsorption of tetracycline to carbon nanotubes: a comparative study using activated carbon and graphite as adsorbents. Environ. Sci. Technol. 43(7), 2322–2327 (2009)

    Article  CAS  Google Scholar 

  40. P. Kulshrestha, R.F. Giese, D.S. Aga, Investigating the molecular interactions of oxytetracycline in clay and organic matter: insights on factors affecting its mobility in soil. Environ. Sci. Technol. 38(15), 4097–4105 (2004)

    Article  CAS  Google Scholar 

  41. M. Sander, J.J. Pignatello, Characterization of charcoal adsorption sites for aromatic compounds: insights drawn from single-solute and Bi-solute competitive experiments. Environ. Sci. Technol. 39(6), 1606–1615 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was financially supported by the Natural Science Foundation of Universities of Anhui Province (KJ2015A016), the Ph.D. Fund of Anhui University of Science and Technology (ZY540) and and the Key Science Foundation for Young Teachers of Anhui University of Science and Technology (QN201507).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Yin, Y., Yang, C. et al. Remove mechanisms of sulfamethazine by goethite: the contributions of pH and ionic strength. Res Chem Intermed 42, 6423–6435 (2016). https://doi.org/10.1007/s11164-016-2472-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-016-2472-4

Keywords

Navigation