Skip to main content
Log in

Photocatalytic degradation of 4-nitrophenol using TiO2 + Fe2O3 and TiO2/Fe2O3-supported bentonite as heterogeneous catalysts

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

TiO2/natural hematite-supported bentonite (TiNHB) was successfully synthesized as a heterogeneous catalyst for photodegradation of 4-nitrophenol (4-NP) in aqueous solution. Supporting on TiO2/hematite rendered a significant increase in specific surface area of bentonite. X-ray diffraction and Fourier-transform infrared spectroscopy analyses confirmed the presence of both TiO2 and Fe2O3 nanoparticles in the TiNHB catalyst. The photocatalytic performance of TiNHB was investigated using reduction of 4-nitrophenol (4-NP) as model reaction. The results showed that TiNHB converted nearly 98 % of 4-NP under UV254nm irradiation with optimum operating conditions of 0.025 g/L TiNHB, pH 3, and 20 mg/L 4-NP. The reaction kinetics of the photocatalytic reduction of 4-NP were studied by UV–Vis spectrophotometry, and the apparent rate constant was determined for comparison with TiO2 + Fe2O3. This work is expected to shed new light on the development of new photocatalysts for removal of environmental pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. X. Xu, Z. Liu, X. Zhang, S. Duan, S. Xu, C. Zhou, β-Cyclodextrin functionalized mesoporous silica for electrochemical selective sensor: simultaneous determination of nitrophenol isomers. Electrochim. Acta 58, 142–149 (2011)

    Article  CAS  Google Scholar 

  2. J. Wu, X. Wang, H. Kang, J. Zhang, C. Yang, CuFe2O4 as heterogeneous catalyst in degradation of p-nitrophenol with photoelectron-Fenton-like process. Int. J. Environ. Stud. 71, 534–545 (2014)

    Article  CAS  Google Scholar 

  3. S. Peretz, O. Cinteza, Removal of some nitrophenol contaminants using alginate gel beads. Colloids Surf. A Physicochem. Eng. Asp. 319, 165–172 (2008)

    Article  CAS  Google Scholar 

  4. K.P. Mishra, P.R. Gogate, Intensification of sonophotocatalytic degradation of p-nitrophenol at pilot scale capacity. Ultrason. Sonochem. 18, 739–744 (2011)

    Article  CAS  Google Scholar 

  5. Y. Gao, Y. Wang, H. Zhang, Removal of Rhodamine B with Fe-supported bentonite as heterogeneous photo-Fenton catalyst under visible irradiation. Appl. Catal. B: Environ. 178, 29–36 (2015)

    Article  CAS  Google Scholar 

  6. Z. Huang, P. Wu, Y. Lu, X. Wang, N. Zhu, Z. Dang, Enhancement of photocatalytic degradation of dimethyl phthalate with nano-TiO2 immobilized onto hydrophobic layered double hydroxides: a mechanism study. J. Hazard. Mater. 246–247, 70–78 (2013)

    Article  Google Scholar 

  7. A. Nezamzadeh-Ejhieh, M. Amiri, CuO supported clinoptilolite towards solar photocatalytic degradation of p-aminophenol. Powder Technol. 235, 279–288 (2013)

    Article  CAS  Google Scholar 

  8. M.V. Phanikrishna Sharma, V. Durga Kumari, M. Subrahmanyam, TiO2 supported over SBA-15: an efficient photocatalyst for the pesticide degradation using solar light. Chemosphere 73, 1562–1569 (2008)

    Article  CAS  Google Scholar 

  9. E.S. Elmolla, M. Chaudhuri, Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO2 and UV/H2O2/TiO2 photocatalysis. Desalination 252, 46–52 (2010)

    Article  CAS  Google Scholar 

  10. S. Ahmed, M.G. Rasul, R. Brown, M.A. Hashib, Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: a short review. J. Environ. Manage. 92, 311–330 (2011)

    Article  CAS  Google Scholar 

  11. M. Gar Alalm, A. Tawfik, S. Ookawara, Comparison of solar TiO2 photocatalysis and solar photo-Fenton for treatment of pesticides industry wastewater: operational conditions, kinetics, and costs. J. Water Process Eng. 8, 55–63 (2015)

    Article  Google Scholar 

  12. S. Banerjee, S.C. Pillai, P. Falaras, K.E. O’Shea, J.A. Byrne, D.D. Dionysiou, New insights into the mechanism of visible light photocatalysis. J. Phys. Chem. Lett. 5, 2543–2554 (2014)

    Article  CAS  Google Scholar 

  13. C.-Y. Kuo, H.-Y. Lin, Effect of coupled semiconductor system treating aqueous 4-nitrophenol. J. Environ. Sci. Heal. A 39(8), 2113–2127 (2004)

    Article  Google Scholar 

  14. N.M. Khalil, M.M.S. Wahsh, E.E. Saad, Hydrothermal extraction of α-Fe2O3 nanocrystallite from hematite ore. J. Ind. Eng. Chem. 21, 1214–1218 (2015)

    Article  CAS  Google Scholar 

  15. T.-W. Sun, Y.-J. Zhu, C. Qi, G.-J. Ding, F. Chen, J. Wu, α-Fe2O3 nanosheet-assembled hierarchical hollow mesoporous microspheres: microwave-assisted solvothermal synthesis and application in photocatalysis. J. Colloid Interf. Sci. 463, 107–117 (2016)

    Article  CAS  Google Scholar 

  16. B. Benguella, A. Yacouta-Nour, Adsorption of Bezanyl Red and Nylomine Green from aqueous solutions by natural and acid-activated bentonite. Desalination 235, 276–292 (2009)

    Article  CAS  Google Scholar 

  17. B. Benguella, A. Yacouta-Nour, Elimination des colorants acides en solution aqueuse par la bentonite et le kaolin. C. R. Chim. 12, 762–771 (2009)

    Article  CAS  Google Scholar 

  18. D. T. Sponza, R. Oztekin, Ciproxin removal from a raw wastewater by nano bentonite-ZnO: comparison of adsorption and photooxidation processes. Recent Adv. Environ. Biol. Eng. ISBN: 978-1-61804-259-0

  19. S. Kacha, Z. Derriche, S. Elmaleh, Equilibrium and kinetics of color removal from dye solutions with bentonite and polyaluminum hydroxide. Water Environ. Res. 75(1), 15–20 (2003)

    Article  CAS  Google Scholar 

  20. O.B. Ayodele, B.H. Hameed, Synthesis of copper pillared bentonite ferric oxalate catalyst for degradation of 4-nitrophenol in visible light assisted Fenton process. J. Ind. Eng. Chem. 19(3), 966–974 (2012)

    Article  Google Scholar 

  21. J.P. Dhal, B.G. Mishra, G. Hota, Hydrothermal synthesis and enhanced photocatalytic activity of ternary Fe2O3/ZnFe2O4/ZnO nanocomposite through cascade electron transfer. RSC Adv. 5, 58072–58083 (2015)

    Article  CAS  Google Scholar 

  22. J. Sundaramurthy, P. Suresh Kumar, M. Kalaivani, V. Thavasi, S.G. Mhaisalkar, S. Ramakrishna, Superior photocatalytic behavior of novel 1D nanobraid and nanoporous α-Fe2O3 structures. RSC Adv. 2, 8201–8208 (2012)

    Article  CAS  Google Scholar 

  23. S. Zhang, F. Ren, W. Wu, J. Zhou, L. Sun, X. Xiao, C. Jiang, Size effects of agnanoparticles on plasmon-induced enhancement of photocatalysis of Ag-α-Fe2O3 nanocomposites. J. Colloid Interf. Sci. 427, 29–34 (2014)

    Article  CAS  Google Scholar 

  24. Z. Wu, H. Yu, L. Kuai, H. Wang, T. Pei, B. Geng, Cd Surchin-like microspheres/α-Fe2O3 and CdS/Fe3O4 nanoparticles heterostructures with improved photocatalytic recycled activities. J. Colloid Interf. Sci. 426, 83–89 (2014)

    Article  CAS  Google Scholar 

  25. N.K. Chaudhari, M.S. Kim, T.S. Bae, J.S. Yu, Hematite (α-Fe2O3) nanoparticles on vulcan carbon as an ultrahigh capacity anode material in lithium ion battery. Electrochim. Acta 114, 60–67 (2013)

    Article  CAS  Google Scholar 

  26. S. Dzwigaj, C. Arrouvel, M. Breysse, C. Geantet, S. Inoue, H. Toulhoat, P. Raybaud, DFT makes the morphologies of anatase-TiO2 nanoparticles visible to IR spectroscopy. J. Catal. 236, 245–250 (2005)

    Article  CAS  Google Scholar 

  27. S. Guo, G. Zhang, Y. Guo, J.C. Yu, Graphene oxide–Fe2O3 hybrid material as highly efficient heterogeneous catalyst for degradation of organic contaminants. Carbon 60, 437–444 (2013)

    Article  CAS  Google Scholar 

  28. J.A. Navio, C. Cerrillos, C. Real, Photoinduced transformation, upon UV illumination in air, of hyponitrite species N2O2 2− preadsorbed on TiO2 surface. Surf. Interf. Anal. 24(5), 355–359 (1996)

    Article  CAS  Google Scholar 

  29. F.Z. Choumane, B. Benguella, Removal of acetamiprid from aqueous solutions with low-cost sorbents. J. Desalin. Wat. Treat. 57(1), 419–430 (2016)

    CAS  Google Scholar 

  30. Z. Khodami, A. Nezamzadeh-Ejhieh, Investigation of photocatalytic effect of ZnO–SnO2/nanoclinoptilolite system in the photodegradation of aqueous mixture of 4-methylbenzoic acid/2-chloro-5-nitrobenzoic acid. J. Mol. Catal. A: Chem. 409, 59–68 (2015)

    Article  CAS  Google Scholar 

  31. A. Nezamzadeh-Ejhieh, S. Khorsandi, Photocatalytic degradation of 4-nitrophenol with ZnO supported nano-clinoptilolite zeolite. J. Ind. Eng. Chem. 20, 937–946 (2014)

    Article  CAS  Google Scholar 

  32. T. Hiemstra, J.C.M. DE wit, W.H. van Riemsdijk, Multisite proton adsorption modeling at the solid/solution interface of (hydr) oxides: a new approach. II. Application to various important (hydr) oxides. J. Colloid Interf. Sci. 133, 105–117 (1989)

    Article  CAS  Google Scholar 

  33. Y. Shen, Q. Zhao, X. Li, Y. Hou, G. Chen, Surface photovoltage property of magnesium ferrite/hematite heterostructured hollow nanospheres prepared with one-pot strategy. Col. Surf. A: Physicochem. Eng. Asp. 403, 35–40 (2012)

    Article  CAS  Google Scholar 

  34. Y. Gao, Y. Masuda, Z. Peng, T. Yonezawa, K. Koumoto, Room temperature deposition of a TiO2 thin film from aqueous peroxotitanate solution. J. Mater. Chem. 13, 608–613 (2003)

    Article  CAS  Google Scholar 

  35. A. Nezamzadeh-Ejhieh, A. Shirzadi, Enhancement of the photocatalytic activity of ferrous oxide by doping onto the nano-clinoptilolite particles towards photodegradation of tetracycline. Chemosphere 107, 136–144 (2014)

    Article  CAS  Google Scholar 

  36. X. Li, Z. Huanga, Z. Liua, K. Diaoa, G. Fana, Z. Huanga, X. Tana, In situ photocalorimetry: an alternative approach to study photocatalysis by tracing heat changes and kinetics. Appl. Catal. B 181, 79–87 (2016)

    Article  CAS  Google Scholar 

  37. A. Babuponnusami, K. Muthukumar, A review on Fenton and improvements to the Fenton process for wastewater treatment. J. Environ. Chem. Eng. 2, 557–572 (2014)

    Article  CAS  Google Scholar 

  38. C. Colombo, G. Palumbo, A. Ceglie, R. Angelico, Characterization of synthetic hematite (a-Fe2O3) nanoparticles using a multi-technique approach. J. Colloid Interf. Sci. 374, 118–126 (2012)

    Article  CAS  Google Scholar 

  39. Y.-Q. Ji, L. Black, R. Koster, M. Janek, Hydrophobic coagulation and aggregation of hematite particles with sodium dodecylsulfate. Col. Surf. A: Physicochem. Eng. Asp. 298, 235–244 (2007)

    Article  CAS  Google Scholar 

  40. O. Carp, C.L. Huisman, A. Reller, Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem. 32, 33–177 (2004)

    Article  CAS  Google Scholar 

  41. H.R. Pouretedal, H. Motamedi, A. Amiri, Aromatic compounds photodegradation catalyzed by ZnS and CdS nanoparticles. Desalin. Wat. Treat. 44, 92–99 (2012)

    Article  CAS  Google Scholar 

  42. X. Huang, X. Hou, J. Zhao, L. Zhang, Hematite facet confined ferrous ions as high efficient Fenton catalysts to degrade organic contaminants by lowering H2O2 decomposition energetic span. Appl. Catal. B 181, 127–137 (2016)

    Article  CAS  Google Scholar 

  43. S.-P. Sun, X. Zeng, C. Li, A.T. Lemley, Enhanced heterogeneous and homogeneous Fenton-like degradation of carbamazepine by nano-Fe3O4/H2O2 with nitrilotriacetic acid. Chem. Eng. J. 244, 44–49 (2014)

    Article  CAS  Google Scholar 

  44. A. Nezamzadeh-Ejhieh, E. Shahriari, Photocatalytic decolorization of methyl green using Fe(II)-o-phenanthroline as supported onto zeolite Y. J. Ind. Eng. Chem. 20, 2719–2726 (2014)

    Article  CAS  Google Scholar 

  45. M. Bahrami, A. Nezamzadeh-Ejhieh, Effect of supporting and hybridizing of FeO and ZnO semiconductors onto an Iranian clinoptilolite nano-particles and the effect of ZnO/FeO ratio in the solar photodegradation of fish ponds waste water. Mater. Sci. Semicond. Process 27, 833–840 (2014)

    Article  CAS  Google Scholar 

  46. M. Amiri, A. Nezamzadeh-Ejhieh, Improvement of the photocatalytic activity of cupric oxide by deposition onto a natural clinoptilolite substrate. Mater. Sci. Semicond. Process. 31, 501–508 (2015)

    Article  CAS  Google Scholar 

  47. X. Li, Y. Huang, C. Li, J. Shen, Y. Deng, Degradation of pCNB by Fenton like process using a-FeOOH. Chem. Eng. J. 260, 28–36 (2015)

    Article  CAS  Google Scholar 

  48. N. Assi, A. Mohammadi, Q.S. Manuchehri, R.B. Walker, Synthesis and characterization of ZnO nanoparticle synthesized by a microwave-assisted combustion method and catalytic activity for the removal of ortho-nitrophenol. Desalin. Wat. Treat. 54, 1939–1948 (2015)

    Article  CAS  Google Scholar 

  49. N. San, A. Hatipoğlu, G. Koçtürk, Z. Çinar, Photocatalytic degradation of 4-nitrophenol in aqueous TiO2 suspensions: theoretical prediction of the intermediates. J. Photochem. Photobiol. A: Chem. 146, 189–197 (2002)

    Article  CAS  Google Scholar 

  50. O.B. Ayodele, B.H. Hameed, Development of kaolinite supported ferric oxalate heterogeneous catalyst for degradation of 4-nitrophenol in photo-Fenton process. Appl. Clay Sci. 83–84, 171–181 (2013)

    Article  Google Scholar 

  51. A. Nezamzadeh-Ejhieh, Z. Ghanbari-Mobarakeh, Heterogeneous photodegradation of 2,4-dichlorophenol using FeO doped onto nano-particles of zeolite P. J. Ind. Eng. Chem. 21, 668–676 (2015)

    Article  CAS  Google Scholar 

  52. H. Zabihi-Mobarakeh, A. Nezamzadeh-Ejhieh, Application of supported TiO2 onto Iranian clinoptilolite nanoparticles in the photodegradation of mixture of aniline and 2,4-dinitroaniline aqueous solution. J. Ind. Eng. Chem. 26, 315–321 (2015)

    Article  CAS  Google Scholar 

  53. C. Karunakaran, R. Dhanalakshmi, P. Gomathisankar, G. Manikandan, Enhanced phenol-photodegradation by particulate semiconductor mixtures: interparticle electron-jump. J. Hazard. Mater. 176, 799–806 (2010)

    Article  CAS  Google Scholar 

  54. X. Liu, K. Chen, J.-J. Shim, J. Huang, Facile synthesis of porous Fe2O3 nanorods and their photocatalytic properties. J. Saudi Chem. Soc. 19, 479–484 (2015)

    Article  Google Scholar 

  55. J. Zhang, L. Zhang, X. Li, S.-Z. Kang, J. Mu, Visible light photocatalytic activity of porphyrin tin (IV) sensitized TiO2 nanoparticles for the degradation of 4-nitrophenol and methyl orange. J. Dispersion Sci. Technol. 32, 943–947 (2011)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malika Mokhtari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaffour, H., Mokhtari, M. Photocatalytic degradation of 4-nitrophenol using TiO2 + Fe2O3 and TiO2/Fe2O3-supported bentonite as heterogeneous catalysts. Res Chem Intermed 42, 6025–6038 (2016). https://doi.org/10.1007/s11164-016-2436-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-016-2436-8

Keywords

Navigation