Skip to main content

Advertisement

Log in

Photodegradation mechanisms of phenol in the photocatalytic process

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Investigating the photodegradation pathways of phenol, as well as the efficiency of photocatalysis by commercial TiO2 is the main task in this present work. Commercial TiO2 particles with the following characteristics: 96 % anatase, 4 % rutile, and 400 nm particles size were used as catalyst source. The photocatalytic process was carried out by mixing 100 ppm of phenol solution and 0.9 g/L of TiO2 particles with magnetic stirrer under UV-C light with 210 nm wavelength. UV–Vis spectrophotometer and COD measurement were used to evaluate the efficiency of photocatalysis. On the other hand, the formed intermediate products during phenol photodegradation were identified by LC–MS, UV–Vis spectrophotometer, and photoluminescence techniques. The results indicated that phenol was removed completely after 24 h of UV-C irradiation. The absorbance peak of phenol slightly decreased during the first 16 h. However, the peak dramatically reduced and disappeared at 24 h of irradiation. This degradation mechanism also occurred similarly to the COD value. There were two phases in photocatalysis of phenol. In phase-I, phenol was decomposed to hydroxylated compounds such as catechol, benzoquinone, and complexes with two benzene rings. In the mineralization phase, hydroxylated compounds were mineralized strongly by hydroxyl radicals, hydrogen radicals, and UV energy to form short-chain organic compounds such as formic acid, glycerol, and oxalic acid. Finally, hydrocarbon chains were broken easily and removed in the forms of carbon dioxide and water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. T. Teka, A. Reda, Int. J. Technol. Enhanc. Emerg. Eng. Res. 2, 2347 (2014)

    Google Scholar 

  2. H. Eskandarloo, A. Badiei, C. Haug, Mater. Sci. Semicond. Process. 27, 240 (2014)

    Article  CAS  Google Scholar 

  3. I. Prabha, S. Lathasree, Mater. Sci. Semicond. Process. 26, 603 (2014)

    Article  CAS  Google Scholar 

  4. J. McCall, C. Alexander, M.M. Richter, Anal. Chem. 71, 2523 (1999)

    Article  CAS  Google Scholar 

  5. A. Hasanoglu, Desalination 309, 171 (2013)

    Article  CAS  Google Scholar 

  6. B.H. Hameed, A.A. Rahman, J. Hazard. Mater. 160, 573 (2008)

    Article  Google Scholar 

  7. A. Hussain, P. Kumar, I. Mehrotra, Bioresour. Technol. 99, 8497 (2008)

    Article  CAS  Google Scholar 

  8. M. Pera-Titus, V. Garcıia-Molina, M.A. Banos, J. Gimenez, S. Esplugas, Appl. Catal. B 47, 219 (2004)

    Article  CAS  Google Scholar 

  9. P.V.A. Padmanabhan, K.P. Sreekumar, T.K. Thiyagarajan, R.U. Satpute, K. Bhanumurthy, P. Sengupta, G.K. Dey, K.G.K. Warrier, Vacuum 80, 1252 (2006)

    Article  CAS  Google Scholar 

  10. U.I. Gaya, A.H. Abdullah, J. Photochem. Photobiol. C 9, 1 (2008)

    Article  CAS  Google Scholar 

  11. M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Water Res. 44, 2997 (2010)

    Article  CAS  Google Scholar 

  12. P. Navarro, J. Sarasa, D. Sierra, S. Esteban, I.L. Ovelleiro, Water Sci. Technol. 51, 113 (2005)

    CAS  Google Scholar 

  13. M. Yasmina, K. Mourad, S.H. Mohammed, C. Khaoula, Energy Procedia 50, 559 (2014)

    Article  CAS  Google Scholar 

  14. K. Nakata, A. Fujishima, J. Photochem. Photobiol. C 13, 169 (2012)

    Article  CAS  Google Scholar 

  15. J. Zhou, Y. Zhang, X.S. Zhao, A.K. Ray, Ind. Eng. Chem. Res. 45, 3503 (2006)

    Article  CAS  Google Scholar 

  16. A. Thiruvenkatachari, S. Vigneswaran, I.S. Moon, Korean J. Chem. Eng. 25, 64 (2008)

    Article  CAS  Google Scholar 

  17. N. Barka, I. Bakas, S. Qourzal, A. Assabbane, Y. Ait-Ichou, Orient. J. Chem. 29, 1055 (2013)

    Article  CAS  Google Scholar 

  18. A. Sobczynski, L. Duczmal, W. Zmudzinski, Mol. Catal. A 213, 225 (2004)

    Article  CAS  Google Scholar 

  19. A.M. Peiro, A. Ayllon, J. Peral, X. Domenech, Appl. Catal. B 30, 359 (2001)

    Article  CAS  Google Scholar 

  20. Z. Guo, R. Ma, G. Li, Chem. Eng. 119, 55 (2006)

    Article  CAS  Google Scholar 

  21. A. Sclafani, L. Palmisano, M. Schiavello, J. Phys. Chem. 94, 829 (1990)

    Article  CAS  Google Scholar 

  22. G. Palmisano, M. Addamo, V. Augugliaro, T. Caronna, A. Di Paola, E.G. López, V. Loddo, G. Marcì, L. Palmisano, M. Schiavello, Catal. Today 122, 118 (2007)

    Article  CAS  Google Scholar 

  23. K. Okamoto, Y. Yamamoto, H. Tanaka, M. Tanaka, A. Itaya, Bull. Chem. Soc. Jpn 58, 2015 (1985)

    Article  CAS  Google Scholar 

  24. N. Yuangpho, S.T.T. Le, T. Treerujiraphapong, W. Khanitchaidecha, A. Nakaruk, Phys. E 67, 18 (2015)

    Article  CAS  Google Scholar 

  25. M.C. Neves, J.M.F. Nogueira, T. Trindade, M.H. Mendonca, M.I. Pereira, O.C. Monteiro, J. Photochem. Photobiol. A 204, 168 (2009)

    Article  CAS  Google Scholar 

  26. C.H. Chiou, C.Y. Wu, R.S. Juang, Chem. Eng. J. 139, 322 (2008)

    Article  CAS  Google Scholar 

  27. D. Chen, A.K. Ray, Appl. Catal. B 23, 143 (1999)

    Article  Google Scholar 

  28. V.P. Tyagi, Essential chemistry XII (Ratna Sagar P. Ltd., New Delhi, 2009)

    Google Scholar 

  29. P.S. Kalsi, Organic reaction and their mechanism, 2nd edn. (New age international, New Delhi, 2009)

    Google Scholar 

  30. P.W. Daniel, H.W. Arthur, Pushing electron: a guide for students of organic chemistry, 4th edn. (Cengage Learning, Boston, 2013)

    Google Scholar 

  31. G. Albarran, W. Boggess, V. Rassolov, R.H. Schuler, J. Phys. Chem. A 114, 740 (2010)

    Article  Google Scholar 

  32. L.G. Devi, K.E. Rajashekhar, Mol. Catal. A 334, 65 (2011)

    Article  CAS  Google Scholar 

  33. D. Duprez, F. Delanoe, J. Barbier Jr, P. Isnard, G. Blanchard, Catal. Today 29, 317 (1996)

    Article  CAS  Google Scholar 

  34. J. Moreira, B. Serrano, A. Ortiz, H. Lasa, Chem. Eng. Sci. 78, 186 (2012)

    Article  CAS  Google Scholar 

  35. E. Grabowska, J. Reszczynska, A. Zaleska, Water Res. 46, 5453 (2012)

    Article  CAS  Google Scholar 

  36. E.B. Azevedo, A.R. Torres, F.R. Aquino Neto, M. Dezotti, Braz. J. Chem. Eng. 26, 75 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Siam Kubota Corporation Co., Ltd. and Naresuan University for providing the financial support for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Nakaruk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, T.T.T., Le, S.T.T., Channei, D. et al. Photodegradation mechanisms of phenol in the photocatalytic process. Res Chem Intermed 42, 5961–5974 (2016). https://doi.org/10.1007/s11164-015-2417-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-015-2417-3

Keywords

Navigation