Skip to main content
Log in

Synthesis of CuS by elemental-direct-reaction in a reline deep eutectic solvent and its catalytic activity in the thermal decomposition of ammonium perchlorate

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Micro-sized copper sulfide (CuS) has been successfully synthesized via an elemental-direct-reaction route in a reline deep eutectic solvent at a low temperature condition (50 °C). The copper sulfide was characterized by X-ray diffraction pattern, scanning electron microscopy images, energy-dispersive X-ray spectroscopy, and transmission electron microscopy. The as-synthesized copper sulfide was pure hexagonal phase microspheres (about 4.0–4.3 μm in diameter), which were assembled with randomly oriented thin slices (about 18 nm in thickness). Moreover, the CuS samples showed high catalytic activity for the thermal decomposition of ammonium perchlorate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. Ji, J. Cao, J. Feng, X. Chang, X. Ma, J. Liu, M. Zheng, Fabrication of CuS nanocrystals with various morphologies in the presence of a nonionic surfactant. Mater. Lett. 59, 3169–3172 (2005)

    Article  CAS  Google Scholar 

  2. J.S. Chung, H.J. Sohn, Electrochemical behaviors of CuS as a cathode material for lithium secondary batteries. J. Power Sources 108, 226–231 (2002)

    Article  CAS  Google Scholar 

  3. Y. Chen, C. Davoisne, J.M. Tarascon, Growth of single-crystal copper sulfide thin films viaelectrodeposition in ionic liquid media for lithium ion batteries. Mater. Chem. 22, 5295–5299 (2012)

    Article  CAS  Google Scholar 

  4. Q.W. Shu, J. Lan, M.X. Gao, J. Wang, C.Z. Huang, Controlled synthesis of CuS caved superstructuresand their application to the catalysis of organic dyedegradation in the absence of light. CrystEngComm 17, 1374–1380 (2015)

    Article  CAS  Google Scholar 

  5. Y. Wu, C. Wadia, W. Ma, B. Sadtler, A.P. Alivisatos, Synthesis and photovoltaic application of copper(I) sulfide nanocrystals. Nano Lett. 8(8), 2551–2555 (2008)

    Article  CAS  Google Scholar 

  6. T. Sakamoto, H. Sunamura, H. Kawaura, T. Hasegawa, T. Nakayama, M. Aono, Nanometer-scale switches using copper sulfide. Appl. Phys. Lett. 82, 3032–3034 (2003)

    Article  CAS  Google Scholar 

  7. A. Stein, B.J. Melde, R.C. Schroden, Hybrid inorganic–organic mesoporous silicates-nanoscopic reactors coming of age. Adv. Mater. 19(12), 1403–1419 (2000)

    Article  Google Scholar 

  8. M. Nagarathinam, K. Saravanan, W.L. Leong, P. Balaya, Hollow nanospheres and flowers of CuS from self-assembled Cu(II) coordination polymer and hydrogen-bonded complexes of N-(2-Hydroxybenzyl)-l-Serine. Cryst. Growth Des. 9, 4461–4470 (2009)

    Article  CAS  Google Scholar 

  9. A.M. Malyarevich, N.N. Posnov, K.V. Yumashev, V.S. Gurin, A.A. Alekseenko, V.B. Prokopenko, I.M. Mel’nichenko, Nonlinear optical properties of CuxS and CuInS2 semiconductor nanoparticles in sol–gel glass. J. Appl. Spectrosc. 67, 699–704 (2000)

    Article  CAS  Google Scholar 

  10. T.Y. Ding, M.S. Wang, S.P. Guo, G.C. Guo, J.S. Huang, CuS nanoflowers prepared by a polyol route and their photocatalytic property. Mater. Lett. 62, 4529–4531 (2008)

    Article  CAS  Google Scholar 

  11. G.R. Chaudhary, P. Bansal, S.K. Mehta, Recyclable CuS quantum dots as heterogeneous catalyst for Biginelli reaction under solvent free conditions. Chem. Eng. J. 243, 217–224 (2014)

    Article  CAS  Google Scholar 

  12. Z.K. Yang, L.X. Song, Y. Teng, J. Xia, Ethylenediamine-modulated synthesis of highly monodisperse copper sulfide microflowers with excellent photocatalytic performance. J. Mater. Chem. 2, 20004–20009 (2014)

    Article  CAS  Google Scholar 

  13. K. Zare, M. Darouie, F. Mollaamin, M. Monajjemi, An investigation on a mild hydrothermal route to CuS nano and submicro structures. Int. J. Phys. Sci. 6(10), 2536–2540 (2011)

    Google Scholar 

  14. M. Saranya, C. Santhosh, R. Ramachandran, P. Kollub, P. Saravanan, M. Vinoba, S.K. Jeong, A.N. Grace, Hydrothermal growth of CuS nanostructures and its photocatalytic properties. Powder Technol. 252, 25–32 (2014)

    Article  CAS  Google Scholar 

  15. Q.L. Huang, H. Chen, Y.C. Zhang, CuS nanostructures prepared by a hydrothermal method. J. Alloys Compd. 509, 6382–6387 (2011)

    Article  CAS  Google Scholar 

  16. P.C. Xue, R. Lu, D.M. Li, M. Jin, C.H. Tan, C.Y. Bao, Z.M. Wang, Y.Y. Zhao, Novel CuS nanofibers using organogel as a template:controlled by binding sites. Langmuir 20, 11234–11239 (2004)

    Article  CAS  Google Scholar 

  17. C.H. Deng, X.Q. Ge, H.M. Hu, L. Yao, C.L. Han, D.F. Zhao, Template-free and green sonochemical synthesis of hierarchically structured CuS hollow microspheres displaying excellent Fenton-like catalytic activities. CrystEngComm 16, 2738–2745 (2014)

    Article  CAS  Google Scholar 

  18. M. Xu, H.Y. Wu, P.M. Da, D.Y. Zhao, G.F. Zheng, Unconventional 0-, 1-, and 2-dimensional single-crystalline copper sulfide nanostructures. Nanoscale. 4, 1794–1799 (2012)

    Article  CAS  Google Scholar 

  19. P. Kumar, M. Gusain, R. Nagarajan, Solvent-mediated room temperature synthesis of highly crystalline Cu9S5 (Cu1.8S), CuSe, PbS, and PbSe from their elements. Inorg. Chem. 51, 7945–7947 (2012)

    Article  CAS  Google Scholar 

  20. G. Henshaw, I.P. Parkin, G.A. Shaw, Convenient, room-temperature liquid ammonia routes to metal chalcogenides. J. Chem. Soc. Dalton Trans. 231–236 (1997)

  21. P. Kalyanaraman, N. Vijayashree, A.G. Samuelson, Low temperature synthesis and interconversions of copper sulphides using acetonitrile. Indian J. Chem. 33A, 281–283 (1994)

    CAS  Google Scholar 

  22. Y.D. Li, Z.Y. Wang, Y. Ding, Room temperature synthesis of metal chalcogenides in ethylenediamine. Inorg. Chem. 38, 4737–4740 (1999)

    Article  CAS  Google Scholar 

  23. K. Tezuka, W.C. Sheets, R. Kurihara, H. Imoto, T.J. Marks, K.R. Poeppelmeier, Synthesis of covellite (CuS) from the elements. Solid State Sci. 9, 95–99 (2007)

    Article  CAS  Google Scholar 

  24. A.P. Gonc-alves, E.B. Lopes, A. Casaca, M. Dias, M. Almeida, Growth of CuS platelet single crystals by the high-temperature solution growth technique. J. Cryst. Growth 310, 2742–2745 (2008)

    Article  CAS  Google Scholar 

  25. K.L. Ding, H. Lu, Y.C. Zhang, M.L. Snedaker, D.Y. Liu, J.A. Macia-Agullo, G.D. Stucky, Microwave synthesis of microstructured and nanostructured metal chalcogenides from elemental precursors in phosphonium ionic liquids. J. Am. Chem. Soc. 136, 15465–15468 (2014)

    Article  CAS  Google Scholar 

  26. J. Pola, M. Urbanová, D. Pokorná, Z. Bastl, S. Bakardjieva, J. Šubrt, P. Bezdička, Laser photodeposition of sulfur and room-temperature solid-state reaction with copper. J. Photochem. Photobiol., A 219, 109–114 (2011)

    Article  CAS  Google Scholar 

  27. M. Urbanová, J. Kupčík, P. Bezdička, J. Šubrt, J. Pola, Room-temperature sulfidation of copper nanoparticles with sulfur yielding covellite nanoparticles. C. R. Chimie. 15, 511–516 (2012)

    Article  Google Scholar 

  28. E.L. Smith, A.P. Abbott, K.S. Ryder, Deep Eutectic Solvents (DESs) and their applications. Chem. Rev. 114(21), 11060–11082 (2014)

    Article  CAS  Google Scholar 

  29. Q.H. Zhang, K.D.O. Vigier, S. Royer, Deep eutectic solvents: syntheses, properties and applications. Chem. Soc. Rev. 41, 7108–7146 (2012)

    Article  CAS  Google Scholar 

  30. P.J. Dale, A.P. Samantilleke, D.D. Shivagan, L.M. Peter, Synthesis of cadmium and zinc semiconductor compounds from an ionic liquid containing choline chloride and urea. Thin Solid Films 515, 5751–5754 (2007)

    Article  CAS  Google Scholar 

  31. A.P. Abbott, G. Capper, D.L. Davies, R.K. Rasheed, V. Tambyrajah, Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 70–71 (2003)

  32. I.D. Shah, S.E. Khalafalla, Thermal decomposition of CuS to Cu1.8S. Metall. Trans. 2, 605–606 (1971)

    Article  CAS  Google Scholar 

  33. R. Nomura, K. Kanaya, H. Matsuda, Preparation of copper sulfide powders and thin films by thermal decomposition of copper dithiocarbamate complexes. Ind. Eng. Chem. Res. 28, 877–880 (1989)

    Article  CAS  Google Scholar 

  34. M. Krunks, T. Leskela, R. Mannonen, L. Niinisto, Thermal decomposition of copper(I) thiocarbamide chloride hemihydrate. J. Therm. Anal. 53, 355–364 (1998)

    Article  CAS  Google Scholar 

  35. K. Yao, W. Lu, X. Li, J. Wang, Ionic liquids-modulated two-phase thermal synthesis of three-dimensional CuS nanostructures. J. Solid State Chem. 196, 557–564 (2012)

    Article  CAS  Google Scholar 

  36. M. Rajic, M. Suceska, Study of thermal decomposition kinetics of low-temperature reaction of ammonium perchlorate by isothermal TG. J. Therm. Anal. Calorim. 63, 375–386 (2001)

    Article  CAS  Google Scholar 

  37. L.J. Chen, G.S. Li, P. Qi, L.P. Li, Thermal decomposition of ammonium perchlorate activated via addition of NiO nanocrystals. J. Therm. Anal. Calorim. 92, 765–769 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genxiang Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Y., Yang, F., Liu, C. et al. Synthesis of CuS by elemental-direct-reaction in a reline deep eutectic solvent and its catalytic activity in the thermal decomposition of ammonium perchlorate. Res Chem Intermed 42, 3315–3324 (2016). https://doi.org/10.1007/s11164-015-2212-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-015-2212-1

Keywords

Navigation