Skip to main content
Log in

Microwave-assisted synthesis of multi-walled carbon nanotubes for enhanced removal of Zn(II) from wastewater

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Removal of toxic metals is one of the biggest challenges in ensuring safe water for all as well as protecting the environment. Novel multi-walled carbon nanotubes (MCNTs) have been successfully synthesised by microwave techniques and improved to be an outstanding adsorbent for the removal of Zn(II) from wastewater. The adsorption of Zn(II) was studied and optimized as a function of pH, initial Zn(II) concentration, MCNT dosage, agitation speed, and adsorption time. In order to investigate the dynamic behavior of MCNTs as an adsorbent, the kinetic data were modeled using pseudo-first-order and second-order kinetic models. Different thermodynamic parameters, viz., ∆H°, ∆S° and ∆G° have also been evaluated and it has been found that the adsorption was feasible, spontaneous and endothermic in nature. Statistical analysis reveals that the optimum conditions for the highest removal (99.9 %) of Zn(II) are at pH 10, a MCNT dosage 0.05 g, an agitation speed and time of 160 rpm and 60 min, respectively, with an initial concentration of 10 mg/L. On the basis of the Langmuir model, q m was calculated to be 90.9 mg/g for microwave-synthesized MCNTs. Our results proved that MCNTs can be used as an effective Zn(II) adsorbent due to their high adsorption capacity as well as the short adsorption time needed to achieve equilibrium. Hence, MCNTs serve an important role in the removal of heavy metals from wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Yang, J. Li, D. Shao, J. Hu, X. Wang, Adsorption of Ni(II) on oxidized multi-walled carbon nanotubes: effect of contact time, pH, foreign ions and PAA. J. Hazard. Mater. 166, 109–116 (2009)

    Article  CAS  Google Scholar 

  2. B. Benguella, H. Benaissa, Cadmium removal from aqueous solutions by chitin: kinetic and equilibrium studies. Water Res. 36, 2463–2474 (2002)

    Article  CAS  Google Scholar 

  3. M. Panayotova, Kinetics and thermodynamics of copper ions removal from wastewater by use of zeolite. Waste Manag. 21, 671–676 (2001)

    Article  CAS  Google Scholar 

  4. M.I. Kandah, J.-L. Meunier, Removal of nickel ions from water by multi-walled carbon nanotubes. J. Hazard. Mater. 146, 283–288 (2007)

    Article  CAS  Google Scholar 

  5. T. Coskun, A. Yildirim, C. Balcik, N. Manav Demir, E. Debik, Performances of reverse osmosis membranes for treatment of olive mill wastewater. CLEAN Soil Air Water 41, 463–468 (2013)

    Article  CAS  Google Scholar 

  6. X.-S. Wang, J. Huang, H.-Q. Hu, J. Wang, Y. Qin, Determination of kinetic and equilibrium parameters of the batch adsorption of Ni(II) from aqueous solutions by Na-mordenite. J. Hazard. Mater. 142, 468–476 (2007)

    Article  CAS  Google Scholar 

  7. K. Kadirvelu, K. Thamaraiselvi, C. Namasivayam, Adsorption of nickel(II) from aqueous solution onto activated carbon prepared from coirpith. Sep. Purif. Technol. 24, 497–505 (2001)

    Article  CAS  Google Scholar 

  8. S. Rengaraj, K.-H. Yeon, S.-H. Moon, Removal of chromium from water and wastewater by ion exchange resins. J. Hazard. Mater. 87, 273–287 (2001)

    Article  CAS  Google Scholar 

  9. Y.-S. Wang, S.-H. Hsieh, C.-H. Lee, J.-J. Horng, Adsorption of complex pollutants from aqueous solutions by nanocomposite materials. CLEAN Soil Air Water 41, 828–828 (2013)

    Article  CAS  Google Scholar 

  10. S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  CAS  Google Scholar 

  11. C. Lu, H. Chiu, C. Liu, Removal of zinc(II) from aqueous solution by purified carbon nanotubes: kinetics and equilibrium studies. Ind. Eng. Chem. Res. 45, 2850–2855 (2006)

    Article  CAS  Google Scholar 

  12. W. Chen, L. Li, W. Zhang, F. Xu, M. Niu, J. Wang, Y. Wang, Microwave-assisted dried volcanic tephra/calcium alginate composite for phosphate removal from micro-polluted wastewater. CLEAN Soil Air Water 42, 561–570 (2014)

    Article  CAS  Google Scholar 

  13. A.G. Rinzler, J.H. Hafner, P. Nikolaev, L. Lou, S.G. Kim, D. Tománek, P. Nordlander, D.T. Colbert, R.E. Smalley, Unraveling nanotubes: field emission from an atomic wire. Science 269, 1550–1553 (1995)

    Article  CAS  Google Scholar 

  14. H. Dai, J.H. Hafner, A.G. Rinzler, D.T. Colbert, R.E. Smalley, Nanotubes as nanoprobes in scanning probe microscopy. Nature 384, 147–150 (1996)

    Article  CAS  Google Scholar 

  15. A.C. Dillon, K.M. Jones, T.A. Bekkedahl, C.H. Kiang, D.S. Bethune, M.J. Heben, Storage of hydrogen in single-walled carbon nanotubes. Nature 386, 377–379 (1997)

    Article  CAS  Google Scholar 

  16. J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai, nanotube molecular wires as chemical sensors. Science 287, 622–625 (2000)

    Article  CAS  Google Scholar 

  17. M. Terrones, Science and technology of the twenty-first century: synthesis, properties, and applications of carbon nanotubes. Annu. Rev. Mater. Res. 33, 419–501 (2003)

    Article  CAS  Google Scholar 

  18. T.W. Ebbesen, H.J. Lezec, H. Hiura, J.W. Bennett, H.F. Ghaemi, T. Thio, Electrical conductivity of individual carbon nanotubes. Nature 382, 54–56 (1996)

    Article  CAS  Google Scholar 

  19. R.S. Ruoff, D.C. Lorents, Mechanical and thermal properties of carbon nanotubes. Carbon 33, 925–930 (1995)

    Article  CAS  Google Scholar 

  20. N.M. Mubarak, J.N. Sahu, E.C. Abdullah, N.S. Jayakumar, Removal of heavy metals from wastewater using carbon nanotubes. Sep. Purif. Rev. 43, 311–338 (2013)

    Article  Google Scholar 

  21. E.W. Wambu, C.O. Onindo, W. Ambusso, G.K. Muthakia, Removal of fluoride from aqueous solutions by adsorption using a siliceous mineral of a Kenyan origin. CLEAN Soil Air Water 41, 340–348 (2013)

    Article  CAS  Google Scholar 

  22. A.D. Atasoy, M.O. Sahin, Adsorption of fluoride on the raw and modified cement clay. CLEAN Soil Air Water 42, 415–420 (2014)

    Article  CAS  Google Scholar 

  23. M.I. Neria-González, R. Martínez-Guerra, R. Aguilar-López, Feedback regulation of an industrial aerobic wastewater plant. Chem. Eng. J. 139, 475–481 (2008)

    Article  Google Scholar 

  24. Y. Su, A.S. Adeleye, Y. Huang, X. Sun, C. Dai, X. Zhou, Y. Zhang, A.A. Keller, Simultaneous removal of cadmium and nitrate in aqueous media by nanoscale zerovalent iron (nZVI) and Au doped nZVI particles. Water Res. 63, 102–111 (2014)

    Article  CAS  Google Scholar 

  25. P. Singh, P. Raizada, D. Pathania, A. Kumar, P. Thakur, Preparation of BSA-ZnWO4 nanocomposites with enhanced adsorptional photocatalytic activity for methylene blue degradation. Int. J. Photoenergy 2013 (2013). doi:10.1155/2013/726250

  26. P. Singh, P. Raizada, S. Kumari, A. Kumar, D. Pathania, P. Thakur, Solar-Fenton removal of malachite green with novel Fe 0-activated carbon nanocomposite. Appl. Catal. A 476, 9–18 (2014)

    Article  CAS  Google Scholar 

  27. J. Li, S. Chen, G. Sheng, J. Hu, X. Tan, X. Wang, Effect of surfactants on Pb(II) adsorption from aqueous solutions using oxidized multiwall carbon nanotubes. Chem. Eng. J. 166, 551–558 (2011)

    Article  CAS  Google Scholar 

  28. D. Shao, G. Sheng, C. Chen, X. Wang, M. Nagatsu, Removal of polychlorinated biphenyls from aqueous solutions using beta-cyclodextrin grafted multiwalled carbon nanotubes. Chemosphere 79, 679–685 (2010)

    Article  CAS  Google Scholar 

  29. N.M. Mubarak, J.N. Sahu, E.C. Abdullah, N.S. Jayakumar, P. Ganesan, Single stage production of carbon nanotubes using microwave technology. Diam. Relat. Mater. 48, 52–59 (2014)

    Article  CAS  Google Scholar 

  30. Y.H. Li, Z.C. Di, Z.K. Luan, J. Ding, H. Zuo, X.Q. Wu, C.L. Xu, D.H. Wu, Removal of heavy metals from aqueous solution by carbon nanotubes: adsorption equilibrium and kinetics. J. Environ. Sci. China 16, 208–211 (2004)

    CAS  Google Scholar 

  31. M.A. Tofighy, T. Mohammadi, Adsorption of divalent heavy metal ions from water using carbon nanotube sheets. J. Hazard. Mater. 185, 140–147 (2011)

    Article  CAS  Google Scholar 

  32. Y. Li, F. Liu, B. Xia, Q. Du, P. Zhang, D. Wang, Z. Wang, Y. Xia, Removal of copper from aqueous solution by carbon nanotube/calcium alginate composites. J. Hazard. Mater. 177, 876–880 (2010)

    Article  CAS  Google Scholar 

  33. N.M. Mubarak, R.F. Alicia, E.C. Abdullah, J.N. Sahu, A.B.A. Haslija, J. Tan, Statistical optimization and kinetic studies on removal of Zn2+ using functionalized carbon nanotubes and magnetic biochar. J. Environ. Chem. Eng. 1, 486–495 (2013)

    Article  CAS  Google Scholar 

  34. J.H. Huang, C.C. Chuang, C.H. Tsai, Effect of nickel thickness and microwave power on the growth of carbon nanotubes by microwave-heated chemical vapor deposition. Microelectron. Eng. 66, 10–16 (2003)

    Article  CAS  Google Scholar 

  35. N.M. Mubarak, F. Yusof, M.F. Alkhatib, The production of carbon nanotubes using two-stage chemical vapor deposition and their potential use in protein purification. Chem. Eng. J. 168, 461–469 (2011)

    Article  CAS  Google Scholar 

  36. Q. Wang, J. Li, C. Chen, X. Ren, J. Hu, X. Wang, Removal of cobalt from aqueous solution by magnetic multiwalled carbon nanotube/iron oxide composites. Chem. Eng. J. 174, 126–133 (2011)

    Article  CAS  Google Scholar 

  37. M. Chen, C.-M. Chen, C.-F. Chen, Preparation of high yield multi-walled carbon nanotubes by microwave plasma chemical vapor deposition at low temperature. J. Mater. Sci. 37, 3561–3567 (2002)

    Article  CAS  Google Scholar 

  38. H. Peng, L.B. Alemany, J.L. Margrave, V.N. Khabashesku, Sidewall carboxylic acid functionalization of single-walled carbon nanotubes. J. Am. Chem. Soc. 125, 15174–15182 (2003)

    Article  CAS  Google Scholar 

  39. N.M. Mubarak, J.R. Wong, K.W. Tan, J.N. Sahu, E.C. Abdullah, N.S. Jayakumar, P. Ganesan, Immobilization of cellulase enzyme on functionalized multiwall carbon nanotubes. J. Mol. Catal. B Enzym. 107, 124–131 (2014)

    Article  CAS  Google Scholar 

  40. B.C. Smith, Infrared Spectral Interpretation: A Systematic Approach (CRC Press, Boca Raton, FL, 1998)

    Google Scholar 

  41. C.-S. Kuo, A. Bai, C.-M. Huang, Y.-Y. Li, C.-C. Hu, C.-C. Chen, Diameter control of multiwalled carbon nanotubes using experimental strategies. Carbon 43, 2760–2768 (2005)

    Article  CAS  Google Scholar 

  42. G.G. Yordanov, E. Adachi, C.D. Dushkin, Growth kinetics and characterization of fluorescent CdS nanocrystals synthesized with different sulfur precursors in paraffin hot-matrix. Colloids Surf. A 289, 118–125 (2006)

    Article  CAS  Google Scholar 

  43. M.A. Pimenta, A. Jorio, S.D.M. Brown, A.G. Souza Filho, G. Dresselhaus, J.H. Hafner, C.M. Lieber, R. Saito, M.S. Dresselhaus, Diameter dependence of the Raman D-band in isolated single-wall carbon nanotubes. Phys. Rev. B 64, 041401 (2001)

    Article  Google Scholar 

  44. R. Saito, H. Kataura, Optical properties and Raman spectroscopy of carbon nanotubes, in Carbon Nanotubes, ed. by M. Dresselhaus, G. Dresselhaus, P. Avouris (Springer, Berlin, 2001), pp. 213–247

    Chapter  Google Scholar 

  45. D. Shao, J. Hu, C. Chen, G. Sheng, X. Ren, X. Wang, Polyaniline multiwalled carbon nanotube magnetic composite prepared by plasma-induced graft technique and its application for removal of aniline and phenol. J. Phys. Chem. C 114, 21524–21530 (2010)

    Article  CAS  Google Scholar 

  46. H. Athalin, S. Lefrant, A correlated method for quantifying mixed and dispersed carbon nanotubes: analysis of the Raman band intensities and evidence of wavenumber shift. J. Raman Spectrosc. 36, 400–408 (2005)

    Article  CAS  Google Scholar 

  47. R. Saito, M. Hofmann, G. Dresselhaus, A. Jorio, M. Dresselhaus, Raman spectroscopy of graphene and carbon nanotubes. Adv. Phys. 60, 413–550 (2011)

    Article  CAS  Google Scholar 

  48. M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Raman spectroscopy of carbon nanotubes. Phys. Rep. 409, 47–99 (2005)

    Article  Google Scholar 

  49. D. Shao, J. Hu, Z. Jiang, X. Wang, Removal of 4,4′-dichlorinated biphenyl from aqueous solution using methyl methacrylate grafted multiwalled carbon nanotubes. Chemosphere 82, 751–758 (2011)

    Article  CAS  Google Scholar 

  50. C.V. Diniz, F.M. Doyle, V.S. Ciminelli, Effect of pH on the adsorption of selected heavy metal ions from concentrated chloride solutions by the chelating resin Dowex M-4195. Sep. Sci. Technol. 37, 3169–3185 (2002)

    Article  CAS  Google Scholar 

  51. R. Leyva Ramos, L. Bernal Jacome, J. Mendoza Barron, L. Fuentes Rubio, R. Guerrero Coronado, Adsorption of zinc(II) from an aqueous solution onto activated carbon. J. Hazard. Mater. 90, 27–38 (2002)

    Article  CAS  Google Scholar 

  52. C. Lu, H. Chiu, C. Liu, Removal of zinc(II) from aqueous solution by purified carbon nanotubes: kinetics and equilibrium studies. Ind. Eng. Chem. Res. 45, 2850–2855 (2006)

    Article  CAS  Google Scholar 

  53. F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a review. J. Environ. Manag. 92, 407–418 (2011)

    Article  CAS  Google Scholar 

  54. C.-H. Weng, C. Huang, Adsorption characteristics of Zn(II) from dilute aqueous solution by fly ash. Colloids Surf. A 247, 137–143 (2004)

    Article  CAS  Google Scholar 

  55. C. Lu, H. Chiu, Adsorption of zinc(II) from water with purified carbon nanotubes. Chem. Eng. Sci. 61, 1138–1145 (2006)

    Article  CAS  Google Scholar 

  56. C. Lu, H. Chiu, H. Bai, Comparisons of adsorbent cost for the removal of zinc (II) from aqueous solution by carbon nanotubes and activated carbon. J. Nanosci. Nanotechnol. 7, 4–5 (2007)

    Google Scholar 

  57. X. Ren, J. Li, X. Tan, W. Shi, C. Chen, D. Shao, T. Wen, L. Wang, G. Zhao, G. Sheng, X. Wang, Impact of Al2O3 on the aggregation and deposition of graphene oxide. Environ. Sci. Technol. 48, 5493–5500 (2014)

    Article  CAS  Google Scholar 

  58. M.J. Anderson, P.J. Whitcomb, RSM Simplified: Optimizing Processes Using Response Surface Methods for Design of Experiments (Productivity Press, Taylor & Francis, Statease Inc., USA, 2005)

  59. J. Sahu, J. Acharya, B. Meikap, Response surface modeling and optimization of chromium(VI) removal from aqueous solution using Tamarind wood activated carbon in batch process. J. Hazard. Mater. 172, 818–825 (2009)

    Article  CAS  Google Scholar 

  60. C. Lu, C. Liu, F. Su, Sorption kinetics, thermodynamics and competition of Ni2+ from aqueous solutions onto surface oxidized carbon nanotubes. Desalination 249, 18–23 (2009)

    Article  CAS  Google Scholar 

  61. Y.-H. Li, Z. Luan, X. Xiao, X. Zhou, C. Xu, D. Wu, B. Wei, Removal of Cu2+ ions from aqueous solutions by carbon nanotubes. Adsorpt. Sci. Technol. 21, 475–485 (2003)

    Article  CAS  Google Scholar 

  62. W. Konicki, I. Pełech, E. Mijowska, I. Jasińska, Adsorption kinetics of acid dye acid red 88 onto magnetic multi-walled carbon nanotubes-Fe3C nanocomposite. CLEAN Soil Air Water 42, 284–294 (2014)

    Article  CAS  Google Scholar 

  63. K. Rao, M. Mohapatra, S. Anand, P. Venkateswarlu, Review on cadmium removal from aqueous solutions. Int. J. Eng. Sci. Technol. 2, 81–103 (2010)

  64. C. Chen, X. Wang, Adsorption of Ni(II) from aqueous solution using oxidized multiwall carbon nanotubes. Ind. Eng. Chem. Res. 45, 9144–9149 (2006)

    Article  CAS  Google Scholar 

  65. A. Stafiej, K. Pyrzynska, Adsorption of heavy metal ions with carbon nanotubes. Sep. Purif. Technol. 58, 49–52 (2007)

    Article  CAS  Google Scholar 

  66. C.-H. Wu, Studies of the equilibrium and thermodynamics of the adsorption of Cu2+ onto as-produced and modified carbon nanotubes. J. Colloid Interface Sci. 311, 338–346 (2007)

    Article  CAS  Google Scholar 

  67. V. Mishra, C. Balomajumder, V.K. Agarwal, Dynamic, mechanistic, and thermodynamic modeling of Zn(II) ion biosorption onto zinc sequestering bacterium VMSDCM. CLEAN Soil Air Water 41, 883–889 (2013)

    Article  CAS  Google Scholar 

  68. S. Balaji, T. Kalaivani, C. Rajasekaran, Biosorption of zinc and nickel and its effect on growth of different spirulina strains. CLEAN Soil Air Water 42, 507–512 (2014)

    Article  CAS  Google Scholar 

  69. Y.-H. Li, S. Wang, Z. Luan, J. Ding, C. Xu, D. Wu, Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes. Carbon 41, 1057–1062 (2003)

    Article  CAS  Google Scholar 

  70. S. Zhou, Y. Shao, N. Gao, J. Deng, C. Tan, Equilibrium, kinetic, and thermodynamic studies on the adsorption of triclosan onto multi-walled carbon nanotubes. CLEAN Soil Air Water 41, 539–547 (2013)

    Article  CAS  Google Scholar 

  71. D.G. Kinniburgh, General purpose adsorption isotherms. Environ. Sci. Technol. 20, 895–904 (1986)

    Article  CAS  Google Scholar 

  72. M.J. Temkin, V. Pyzhev, Acta Physiochim. URSS 12, 217 (1940)

    Google Scholar 

  73. S.S. Langergren, B.K. Svenska, Z.T.D. Sogenannten, The theory of adsorption of solutes. Veternskapsakad Handlingar 24 1–39 (1898)

  74. Y.-S. Ho, Second-order kinetic model for the sorption of cadmium onto tree fern: a comparison of linear and non-linear methods. Water Res. 40, 119–125 (2006)

    Article  CAS  Google Scholar 

  75. Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes. Process Biochem. 34, 451–465 (1999)

    Article  CAS  Google Scholar 

  76. S. Yalçın, The mechanism of heavy metal biosorption on green marine Macroalga Enteromorpha linza. CLEAN Soil Air Water 42, 251–259 (2014)

    Article  Google Scholar 

  77. Y.-H. Li, J. Ding, Z. Luan, Z. Di, Y. Zhu, C. Xu, D. Wu, B. Wei, Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon 41, 2787–2792 (2003)

    Article  CAS  Google Scholar 

  78. E. Pehlivan, B. Yanık, G. Ahmetli, M. Pehlivan, Equilibrium isotherm studies for the uptake of cadmium and lead ions onto sugar beet pulp. Bioresour. Technol. 99, 3520–3527 (2008)

    Article  CAS  Google Scholar 

  79. A.E. Agboola, R.W. Pike, T. Hertwig, H.H. Lou, Conceptual design of carbon nanotube processes. Clean Technol. Environ. Policy 9, 289–311 (2007)

    Article  CAS  Google Scholar 

  80. Y.-H. Li, Z. Di, J. Ding, D. Wu, Z. Luan, Y. Zhu, Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes. Water Res. 39, 605–609 (2005)

    Article  CAS  Google Scholar 

  81. Z. Gao, T.J. Bandosz, Z. Zhao, M. Han, J. Qiu, Investigation of factors affecting adsorption of transition metals on oxidized carbon nanotubes. J. Hazard. Mater. 167, 357–365 (2009)

    Article  CAS  Google Scholar 

  82. C. Lu, H. Chiu, Chemical modification of multiwalled carbon nanotubes for sorption of Zn2+ from aqueous solution. Chem. Eng. J. 139, 462–468 (2008)

    Article  CAS  Google Scholar 

  83. C. Lu, H. Chiu, Adsorption of zinc (II) from water with purified carbon nanotubes. Chem. Eng. Sci. 61, 1138–1145 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is financially supported by University of Malaya, Ministry of Higher Education High Impact Research grant program (UM.C/HIR/MOHE/ENG/20).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. N. Sahu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mubarak, N.M., Sahu, J.N., Abdullah, E.C. et al. Microwave-assisted synthesis of multi-walled carbon nanotubes for enhanced removal of Zn(II) from wastewater. Res Chem Intermed 42, 3257–3281 (2016). https://doi.org/10.1007/s11164-015-2209-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-015-2209-9

Keywords

Navigation